WAN Wu-yi, ZHU Song, HU Yun-jin. Attenuation Analysis of Hydraulic Transients With Laminar-Turbulent Flow Alternations[J]. Applied Mathematics and Mechanics, 2010, 31(10): 1152-1159. doi: 10.3879/j.issn.1000-0887.2010.10.002
Citation: WAN Wu-yi, ZHU Song, HU Yun-jin. Attenuation Analysis of Hydraulic Transients With Laminar-Turbulent Flow Alternations[J]. Applied Mathematics and Mechanics, 2010, 31(10): 1152-1159. doi: 10.3879/j.issn.1000-0887.2010.10.002

Attenuation Analysis of Hydraulic Transients With Laminar-Turbulent Flow Alternations

doi: 10.3879/j.issn.1000-0887.2010.10.002
  • Received Date: 1900-01-01
  • Rev Recd Date: 2010-08-25
  • Publish Date: 2010-10-15
  • An improved compound mathematical model was established to simulate attenuation of hydraulic transients with laminar-turbulent alternations, usually occured when pipeline flow velocity fluctuates near the critical velocity.Laminar friction resistance and turbulent friction resistance were considered respectively in this model by applying different resistance schemes to the characteristics method of fluid transient analysis.The hydraulic transients of valve closing process were simulated using the model.More reasonable attenuation of hydraulic transients was obtained.Accurate attenuation is more distinct than that obtained from traditional models.The research shows that hydraulic transient is a type of energy waves, and its attenuation is caused by friction resistance.Laminar friction resistance is more important than turbulent friction resistance if the flow velocity is smaller than the critical velocity.Otherwise turbulent friction resistance is more important.Laminar friction resistance is important in the attenuation of hydraulic transients for valve closing process. Therefore it is significant to consider different resistances separately in order to obtain more accurate attenuation of hydraulic transients.
  • loading
  • [1]
    Wylie E B, Streeter V L. Fluid Transient[M]. New York: McGraw-Hill International Book Company, 1978: 131-143.
    [2]
    Silva A, Walter F, Chaudhry M H. Computation of energy dissipation in transient flow[J]. Journal of Hydraulic Engineering, ASCE, 1997, 123(2): 108-115. doi: 10.1061/(ASCE)0733-9429(1997)123:2(108)
    [3]
    沙毅,王春林,刘涛,邵霞,闻建龙.圆管流动水击压力波测量及水力计算[J].实验力学, 2007, 22(5):527-533.
    [4]
    Brunone B, Ferrante M, Cacciamani M. Decay of pressure and energy dissipation in laminar transient flow [J]. Journal of Fluids Engineering, Transactions of the ASME, 2004, 126(6): 928-934. doi: 10.1115/1.1839926
    [5]
    Wahba E M. Modelling the attenuation of laminar fluid transients in piping systems [J]. Applied Mathematical Modelling 2008, 32 (12):2863-2871.
    [6]
    杨玲霞,李树慧,侯咏梅, 范如琴.水击基本方程的改进[J].水利学报,2007,38(8):948-952.
    [7]
    Jayasinghe D A P, Letelier M S,Leutheusser H J. Frequency-dependent friction in oscillatory laminar pipe flow [J]. International Journal of Mechanical Sciences, 1974, 16(11): 819-827. doi: 10.1016/0020-7403(74)90040-X
    [8]
    Arfaie M, Suwan K, Anderson A. Stability and accuracy of pipe friction approximations in method of characteristics solutions for waterhammer[J]. Mathematical Engineering in Industry, 1994, 4(4): 265-281.
    [9]
    Brunone B, Karney B W M, Mecarelli M F. Velocity profiles and unsteady pipe friction in transient flow[J]. Journal of Water Resources Planning and Management, 2000, 126 (4):236-244. doi: 10.1061/(ASCE)0733-9496(2000)126:4(236)
    [10]
    Masashi S, Jim B, Alan V. Estimating friction errors in MOC analyses of unsteady pipe flows[J]. Computers & Fluids, 2007, 36(7): 1235-1246.
    [11]
    Vardy A E, Hwang K L. Characteristics model of transient friction in pipes [J]. Journal of Hydraulic Research, 1991, 29(5): 669-684. doi: 10.1080/00221689109498983
    [12]
    Warda H A, Kandil H A, Elmiligui A A. Modeling unsteady friction in rapid transient pipe flows[J] AEJ - Alexandria Engineering Journal, 2001, 40(6): 783-795.
    [13]
    Brunone B, Golia U M, Greco M. Effects of two-dimensionality on pipe transients modeling [J]. Journal of Hydraulic Engineering, ASCE, 1995, 121(12): 906-912. doi: 10.1061/(ASCE)0733-9429(1995)121:12(906)
    [14]
    李进平,杨建东. 非恒定摩阻对管道水力过渡过程的影响[J]. 武汉大学学报(工学版),2002,35(2):13-17.
    [15]
    Pezzinga G. Evaluation of unsteady flow resistance by quasi-2D or 1D models[J]. Journal of Hydraulic Engineering, ASCE,2000, 126 (10):778-785. doi: 10.1061/(ASCE)0733-9429(2000)126:10(778)
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1312) PDF downloads(1030) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return