WU Jie, DING Zu-rong, CAI Yan, XU Shi-xiong, ZHAO Gai-ping, LONG Quan. Simulation of Tumor Microvasculature and Microenvironment Response to Anti-Angiogenic Treatment by Angiostatin and Endostatin[J]. Applied Mathematics and Mechanics, 2011, 32(4): 417-427. doi: 10.3879/j.issn.1000-0887.2011.04.005
Citation: WU Jie, DING Zu-rong, CAI Yan, XU Shi-xiong, ZHAO Gai-ping, LONG Quan. Simulation of Tumor Microvasculature and Microenvironment Response to Anti-Angiogenic Treatment by Angiostatin and Endostatin[J]. Applied Mathematics and Mechanics, 2011, 32(4): 417-427. doi: 10.3879/j.issn.1000-0887.2011.04.005

Simulation of Tumor Microvasculature and Microenvironment Response to Anti-Angiogenic Treatment by Angiostatin and Endostatin

doi: 10.3879/j.issn.1000-0887.2011.04.005
  • Received Date: 2010-05-10
  • Rev Recd Date: 2011-02-23
  • Publish Date: 2011-04-15
  • The effects of anti-angiogenesis treatment by angiostain and endostatin on normalization of tumor microvasculature and microenvironment was investigated,based on mathematical modeling and numerical simulation of tumor anti-angiogenesis and tumor haemodynamics.The results show that,after antiangiogenesis treatment:1) the proliferation,growth and branching of neo-vessels is effectively inhibited,the extent of vascularization in tumors is accordingly reduced;2) the overall blood perfusion inside tumor is declined;the plateau of tumor interstitial fluid pressure is relieved;the interstitial fluid oozing out from the tumor periphery into the surrounding normal tissue is reduced;the intravasations across vasculature is remarkably decreased.
  • loading
  • [1]
    Jain R K, Tong R T, Munn L L. Effect of vascular normalization by antiangiogenic therapy on interstitial hypertension, peritumor edema, and lymphatic metastasis: insights from a mathematical model[J]. Cancer Res, 2007, 67(6): 2729-2735. doi: 10.1158/0008-5472.CAN-06-4102
    [2]
    Fukumura D, Jain R K. Tumor microvasculature and microenvironment: targets for anti-angiogenesis and normalization[J]. Microvas Res, 2007, 74(2): 72-84. doi: 10.1016/j.mvr.2007.05.003
    [3]
    Huber P E, Bischof M, Jenne J, Heiland S, Peschke P, Saffrich R, Grne H J, Debus J, Lipson K E, Abdollahi A. Trimodal cancer treatment: beneficial effects of combined antiangiogenesis, radiation, and chemotherapy[J]. Cancer Res, 2005, 65(9): 3643-3655. doi: 10.1158/0008-5472.CAN-04-1668
    [4]
    Tong R T, Boucher Y, Kozin S V, Winkler F, Hicklin D J, Jain R K. Vascular normalization by vascular endothelial growth factor receptor 2 blockade induces a pressure gradient across the vasculature and improves drug penetration in tumors[J]. Cancer Res, 2004, 64(11): 3731-3736. doi: 10.1158/0008-5472.CAN-04-0074
    [5]
    Willett C G, Boucher Y, di Tomaso E, Duda D G, Munn L L, Tong R T, Chung D C, Sahani D V, Kalva S P, Kozin S V, Mino M, Cohen K S, Scadden D T, Hartford A C, Fischman A J, Clark J W, Ryan D P, Zhu A X, Blaszkowsky L S, Chen H X, Shellito P C, Lauwers G Y, Jain R K. Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer[J]. Nat Med, 2004, 10(2): 145-147. doi: 10.1038/nm988
    [6]
    Willett C G, Boucher Y, Duda D G, di Tomaso E, Munn L L, Tong R T, Kozin S V, Petit L, Jain R K, Chung D C, Sahani D V, Kalva S P, Cohen K S, Scadden D T, Fischman A J, Clark J W, Ryan D P, Zhu A X, Blaszkowsky L S, Shellito P C, Mino-Kenudson M, Lauwers G Y. Surrogate markers for antiangiogenic therapy and dose-limiting toxicities for Bevacizumab with radiation and chemotherapy: continued experience of a phase I trial in rectal cancer patients[J]. J Clin Oncol, 2005, 23(31): 8136-8139. doi: 10.1200/JCO.2005.02.5635
    [7]
    O’Reilly M S, Holmgren L, Shing Y, Chen C, Rosenthal R A, Moses M, Lane W S, Cao Y, Sage E H, Folkman J. Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma[J]. Cell, 1994, 79(2): 315-328. doi: 10.1016/0092-8674(94)90200-3
    [8]
    O’Reilly M S, Boehm T, Shing Y, Fukai N, Vasios G, Lane W S, Flynn E, Birkhead J R, Olsen B R, Folkman J. Endostatin: an endogenous inhibitor of angiogenesis and tumor growth[J]. Cell, 1997, 88(2): 277-285. doi: 10.1016/S0092-8674(00)81848-6
    [9]
    Tee D, DiStefano Ⅲ J. Simulation of tumor-induced angiogenesis and its response to anti-angiogenic drug treatment: mode of drug delivery and clearance rate dependencies[J]. J Cancer Res Clin Oncol, 2004, 130(1): 15-24. doi: 10.1007/s00432-003-0491-1
    [10]
    赵改平, 高昊, 吴洁, 许世雄,Collins M W, LONG Quan, Knig C S, Padhani A R.抗血管生成因子Angiostatin与Endostatin作用下肿瘤血管生成的二维数值模拟[J]. 医用生物力学, 2006, 21(4): 272-279. (ZHAO Gai-ping, GAO Hao, WU Jie, XU Shi-xiong, Collins M W, LONG Quan, Knig C S, Padhani A R. 2D numerical simulation of effect anti-angiogenic factors Angiostatin and Endostatin on tumor-induced angiogenesis[J]. J Med Biomech, 2006, 21(4): 272-279. (in Chinese))
    [11]
    Anderson A R A, Chaplain M A J. Continuous and discrete mathematical models of tumor-induced angiogenesis[J]. Bull Math Biol, 1998, 60(5): 857-900. doi: 10.1006/bulm.1998.0042
    [12]
    Wu J, Xu S X, Long Q, Collins M W, Knig C S, Zhao G, Jiang Y, Padhani A R. Coupled modeling of blood perfusion in intravascular, interstitial spaces in tumor microvasculature[J]. J Biomech, 2008, 41(5): 996-1004. doi: 10.1016/j.jbiomech.2007.12.008
    [13]
    Wu J, Long Q, Xu S X, Padhani A R.Study of tumor blood perfusion and its variation due to vascular normalization by anti-angiogenic therapy based on 3D angiogenic microvasculature[J]. J Biomech, 2009, 42(6): 712-721. doi: 10.1016/j.jbiomech.2009.01.009
    [14]
    Baxter L T, Jain R K. Transport of fluid and macromolecules in tumors—Ⅱ: role of heterogeneous perfusion and lymphatics[J]. Microvas Res, 1990, 40(2): 246-263. doi: 10.1016/0026-2862(90)90023-K
    [15]
    万若. 淋巴回流的动力[J]. 生物学教育, 1993, 9: 32. (WAN Ruo. Dynamics of lymphatic return[J]. Biology Teaching, 1993, 9: 32. (in Chinese))
    [16]
    Netti P A, Roberge S, Boucher Y, Baxter L T, Jain R K. Effect of transvascular fluid exchange on pressure-flow relationship in tumors: a proposed mechanism for tumor blood flow heterogeneity[J]. Microvas Res, 1996, 52(1): 27-46. doi: 10.1006/mvre.1996.0041
    [17]
    Pries A R, Secomb T W, Gessner T, Sperandio M B, Gross J F, Gaehtgens P. Resistance to blood flow in microvessels in vivo[J]. Circulation Res, 1994, 75(5): 904-915. doi: 10.1161/01.RES.75.5.904
    [18]
    Pries A R, Secomb T W. Microvascular blood viscosity in vivo and the endothelial surface layer[J]. Am J Physiol Heart Circ Physiol, 2005, 289(6): H2657-H2664.
    [19]
    Eriksson K, Magnusson P, Dixelius J, Claesson-Welsh L, Cross M J. Angiostatin and endostatin inhibit endothelial cell migration in response to FGF and VEGF without interfering with specific intracellular signal transduction pathways[J]. FEBS Letters, 2003, 536(1/3): 19-24. doi: 10.1016/S0014-5793(03)00003-6
    [20]
    Herbst R S, Mullani N A, Davis D W, Hess K R, McConkey D J, Charnsangavej C, O'Reilly M S, Kim H W, Baker C, Roach J, Ellis L M, Rashid A, Pluda J, Bucana C, Madden T L, Tran H T, Abbruzzese J L. Development of biologic markers of response and assessment of antiangiogenic activity in a clinical trial of human recombinant endostatin[J]. J Clin Oncol, 2002, 20(18): 3804-3814. doi: 10.1200/JCO.2002.05.102
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1253) PDF downloads(861) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return