YANG Fan, LIU Bin, FANG Dai-ning. Analysis on High-Temperature Oxidation and the Growth Stress of Iron-Based Alloy Using Phase Field Method[J]. Applied Mathematics and Mechanics, 2011, 32(6): 710-717. doi: 10.3879/j.issn.1000-0887.2011.06.008
Citation: YANG Fan, LIU Bin, FANG Dai-ning. Analysis on High-Temperature Oxidation and the Growth Stress of Iron-Based Alloy Using Phase Field Method[J]. Applied Mathematics and Mechanics, 2011, 32(6): 710-717. doi: 10.3879/j.issn.1000-0887.2011.06.008

Analysis on High-Temperature Oxidation and the Growth Stress of Iron-Based Alloy Using Phase Field Method

doi: 10.3879/j.issn.1000-0887.2011.06.008
  • Received Date: 2011-03-23
  • Rev Recd Date: 2011-04-14
  • Publish Date: 2011-06-15
  • High-temperature oxidation was an important property to evaluate the thermal protection materials.However,as oxidation was a complex process involving microstructure evolution,its quantitative analysis had always been a challenge issue.A phase field method based on thermodynamics theory was developed to simulate oxidation behavior and oxidation induced growth stress.It involves microstructure evolution,and solves the problem of quantitatively computational analysis for oxidation behavior and growth stress.Employing this method,the diffusion process,oxidation performance and stress evolution were predicted for Fe-Cr-Al-Y alloys.Numerical results agree with experiment data well.The linear relationship between maximum growth stress and the environment oxygen concentration is found.This phase field method provides a powerful tool to investigate high temperature oxidation in complex environment.
  • loading
  • [1]
    Kulkarni A J, Zhou M. Surface-effects-dominated thermal and mechanical responses of zinc oxide nanobelts[J]. Acta Mech Sinica, 2006, 22(3): 217-224. doi: 10.1007/s10409-006-0111-9
    [2]
    Li W G, Yang F, Fang D N. The temperature-dependent fracture strength model for ultra-high temperature ceramics[J]. Acta Mech Sinica, 2010, 26(2): 235-239. doi: 10.1007/s10409-009-0326-7
    [3]
    Kaufman L, Clougher E, Berkowit J. Oxidation characteristics of hafnium and zirconium diboride[J]. Transactions of the Metallurgical Society of Aime, 1967, 239(4): 458-466.
    [4]
    Gee S M, Little J A. Oxidation behavior and protection of carbon/carbon composites[J]. J Mater Sci, 1991, 26(4): 1093-1100.
    [5]
    Opila E, Levine S, Lorincz J. Oxidation of ZrB2- and HfB2-based ultra-high temperature ceramics: effect of Ta additions[J]. J Mater Sci, 2004, 39(19): 5969-5977. doi: 10.1023/B:JMSC.0000041693.32531.d1
    [6]
    Monteverde F. The thermal stability in air of hot-pressed diboride matrix composites for uses at ultra-high temperatures[J]. Corros Sci, 2005, 47(8): 2020-2033. doi: 10.1016/j.corsci.2004.09.019
    [7]
    Pilling N B, Bedworth R E. The oxidation of metals at high temperatures[J]. Journal of the Institute of Metals, 1923, 29: 529-582.
    [8]
    Wagner C. The theory of the warm-up process[J]. Z Phys Chem, 1933, 21(1/2): 25-41.
    [9]
    Markworth A J. Kinetics of anisothermal oxidation[J]. Metall Mater Trans A, 1977, 8(12): 2014-2015. doi: 10.1007/BF02646577
    [10]
    Parthasarathy T A, Rapp R A, Opeka M, Kerans R J. A model for the oxidation of ZrB2, HfB2 and TiB2[J]. Acta Mater, 2007, 55(17): 5999-6010. doi: 10.1016/j.actamat.2007.07.027
    [11]
    Chou K C, Hou X M. Kinetics of high-temperature oxidation of inorganic nonmetallic materials[J]. J Am Ceram Soc, 2009, 92(3): 585-594. doi: 10.1111/j.1551-2916.2008.02903.x
    [12]
    Hou X M, Chou K C. Investigation of isothermal oxidation of AlN ceramics using different kinetic model[J]. Corros Sci, 2009, 51(3): 556-561. doi: 10.1016/j.corsci.2008.12.007
    [13]
    Huntz A M. Stresses in NiO, Cr2O3 and Al2O3  oxide scales[J]. Mat Sci Eng A, 1995, 201(1/2): 211-228. doi: 10.1016/0921-5093(94)09747-X
    [14]
    Tolpygo V K, Clarke D R. Competition between stress generation and relaxation during oxidation of an Fe-Cr-Al-Y alloy[J]. Oxid Met, 1998, 49(1/2): 187-212. doi: 10.1023/A:1018828619028
    [15]
    Chen L Q, Shen J. Applications of semi-implicit Fourier-spectral method to phase field equations[J]. Comput Phys Commun, 1998, 108(2/3): 147-158. doi: 10.1016/S0010-4655(97)00115-X
    [16]
    Chen L Q. Phase-field models for microstructure evolution[J]. Annu Rev Mater Res, 2002, 32: 113-140. doi: 10.1146/annurev.matsci.32.112001.132041
    [17]
    Shi S Q, Ma X Q, Woo C H, Chen L Q. The phase field model for hydrogen diffusion and gamma -hydride precipitation in zirconium under non-uniformly applied stress[J]. Mech Mater, 2006, 38(1/2): 3-10. doi: 10.1016/j.mechmat.2005.05.005
    [18]
    Guo X H, Shi S Q, Qiao L J. Simulation of hydrogen diffusion and initiation of hydrogen-induced cracking in PZT ferroelectric ceramics using a phase field model[J]. J Am Ceram Soc, 2007, 90(9): 2868-2872. doi: 10.1111/j.1551-2916.2007.01821.x
    [19]
    Song Y C, Soh A K, Ni Y. Phase field simulation of crack tip domain switching in ferroelectrics[J]. J Phys D Appl Phys, 2007, 40(4): 1175-1182. doi: 10.1088/0022-3727/40/4/040
    [20]
    Shewmon P G. Diffusion in Solid[M]. New York: McGraw-Hill, 1963.
    [21]
    Reddy K P R, Smialek J L, Cooper A R. O-18 tracer studies of Al2O3 scale formation on NiCrAl alloys[J]. Oxid Met, 1982, 17(5/6): 429-449. doi: 10.1007/BF00742122
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1052) PDF downloads(835) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return