WANG Rao-rao, MAO Shuang-shuang, Elaine Romberg, Dwayne Arola, ZHANG Dong-sheng. Importance of Aging to the Dehydration Shrinkage of Human Dentin[J]. Applied Mathematics and Mechanics, 2012, 33(3): 320-331. doi: 10.3879/j.issn.1000-0887.2012.03.005
Citation: WANG Rao-rao, MAO Shuang-shuang, Elaine Romberg, Dwayne Arola, ZHANG Dong-sheng. Importance of Aging to the Dehydration Shrinkage of Human Dentin[J]. Applied Mathematics and Mechanics, 2012, 33(3): 320-331. doi: 10.3879/j.issn.1000-0887.2012.03.005

Importance of Aging to the Dehydration Shrinkage of Human Dentin

doi: 10.3879/j.issn.1000-0887.2012.03.005
  • Received Date: 2011-12-23
  • Rev Recd Date: 2012-01-13
  • Publish Date: 2012-03-15
  • There was an increase in the mineral content of human dentin with aging. Due to the consequent changes in mineral to collagen ratio, this process may influence the degree of hydrogen bonding that occurs with loss of water and the extent of shrinkage as a result of dehydration. Thus, the objective of this investigation was to quantify the differences in dehydration shrinkage of human dentin with patient age. Specimens of coronal dentin were prepared from the molars of young (23≤age≤34) and old (52≤age≤62) patients and then maintained in storage solutions of water or Hanks balanced salt solution(HBSS). Dimensional changes of the dentin specimens occurring over periods of free convection were evaluated using microscopic digital image correlation(DIC). Results distinguished that the shrinkage of young dentin is significantly larger than that for old dentin, regardless of orientation and period of storage (p<0.01).Strains parallel to the tubules increased with proximity to the dentin enamel junction(DEJ) whereas the shrinkage strains in the transverse direction were largest in deep dentin (i.e. near the pulp). The degree of anisotropy in shrinkage increased from the pulp to the DEJ and was largest in young dentin.
  • loading
  • [1]
    Ten Cate A R. Oral Histology: Development, Structure, and Function[M]. Seventh ed. St Louis: Mosby-Year Book Inc, 2008.
    [2]
    Kinney J H, Nalla R K, Pople J A, Breunig T M, Ritchie R O. Age-related transparent root dentin: mineral concentration, crystallite size, and mechanical properties[J]. Biomaterials, 2005, 26(16): 3363-3376.
    [3]
    Porter A E, Nalla R K, Minor A, Jinschek J R, Kisielowski C, Radmilovic V, Kinney J H, Tomsia A P, Ritchie R O. A transmission electron microscopy study of mineralization in age-induced transparent dentin[J]. Biomaterials, 2005, 26(36): 7650-7660.
    [4]
    Walters C, Eyre D R. Collagen crosslinks in human dentin: increasing content of hydroxypyridinium residues with age[J]. Calcif Tissue Int, 1983, 35(4/5):401-405.
    [5]
    Ager J W, Nalla R K, Balooch G, Kim G, Pugach M, Habelitz S, Marshall G W, Kinney J H, Ritchie R O. On the increasing fragility of human teeth with age: a deep-UV resonance Raman study[J]. J Bone Miner Res, 2006, 21(12): 1879-1887.
    [6]
    Arola D. Fracture and aging in dentin. Curtis R, Watson T.Dental Biomaterials: Imaging, Testing and Modeling[M]. Cambridge, UK: Woodhead Publishing, 2007.
    [7]
    Arola D, Bajaj D, Ivancik J, Majd H, Zhang D. Fatigue of biomaterials: hard tissues[J]. International Journal of Fatigue, 2010, 32(9):1400-1412.
    [8]
    Arola D, Reprogel R. Effects of aging on the mechanical behavior of human dentin[J]. Biomaterials, 2005, 26(18): 4051-4061.
    [9]
    Bajaj D, Sundaram N, Nazari A, Arola D. Age, dehydration and fatigue crack growth in dentin[J]. Biomaterials, 2006, 27(11): 2507-2517.
    [10]
    Koester K J, Ager J W, Ritchie R O. The effect of aging on crack-growth resistance and toughening mechanisms in human dentin[J]. Biomaterials, 2008, 29(10): 1318-1328.
    [11]
    Nazari A, Bajaj D, Zhang D, Romberg E, Arola D. On the reduction in fracture toughness of human dentin with age[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2009, 2(5): 550-559.
    [12]
    Goodis H E, Tao L, Pashley D H. Evaporative water loss from human dentine in vitro[J]. Arch Oral Biol, 1990, 35(7): 523-527.
    [13]
    Matthews W G, Showman C D, Pashley D H. Air blast-induced evaporative water loss from human dentine, in vitro[J]. Arch Oral Biol, 1993, 38(6): 517-523.
    [14]
    Van der Graaf E R, Ten Bosch J J. Changes in dimensions and weight of human dentine after different drying procedures and during subsequent rehydration[J]. Arch Oral Biol, 1993, 38(1): 97-99.
    [15]
    Kinney J H, Balooch M, Marshall G, Marshall S J. Atomic-force microscopic study of dimensional changes in human dentine during drying[J]. Arch Oral Biol, 1993, 38(11): 1003-1007.
    [16]
    Nakaoki Y, Nikaido T, Pereira P N R, Inokoshi S, Tagami J. Dimensional changes of demineralized dentin treated with HEMA primers[J]. Dent Mater, 2000, 16(6): 441-446.
    [17]
    Kishen A, Rafique A. Investigations on the dynamics of water in the macrostructural dentine[J]. J Biomed Opt, 2006, 11(5): 054018.
    [18]
    Wood J D, Wang R Z, Weiner S, Pashley D H. Mapping of tooth deformation caused by moisture change using moiré interferometry[J]. Dent Mater, 2003, 19(3): 159-166.
    [19]
    Wood J D, Sobolewski P, Thakur V, Arola D, Nazari A, Tay F R, Pashley D H. Measurement of microstrains across loaded resin-dentin interfaces using microscopic moiré interferometry[J]. Dent Mater, 2008, 24(7): 859-866.
    [20]
    Zhang D, Mao S, Lu C, Romberg E, Arola D. Dehydration and the dynamic dimensional changes within dentin and enamel[J]. Dent Mater, 2009, 25(7): 937-945.
    [21]
    Carrigan P J, Morse D R, Furst M L, Sinai I H. A scanning electron microscopic evaluation of human dentinal tubules according to age and location[J]. J Endod, 1984, 10(8): 359-363.
    [22]
    Garberoglio R, Brnnstrm M. Scanning electron microscopic investigation of human dentinal tubules[J]. Arch Oral Biol, 1976, 21(6): 355-362.
    [23]
    Pashley D H. Dentin: a dynamic substrate—a review[J]. Scanning Microsc, 1989, 3(1): 161-174.
    [24]
    Ryou H, Amin N, Ross A, Eidelman N, Wang D H, Romberg E, Arola D. Contributions of microstructure and chemical composition to the mechanical properties of dentin[J]. J Mater Sci Mater Med, 2011, 22(5):1127-1135.
    [25]
    Habelitz S, Marshall G W Jr, Balooch M, Marshall S J. Nanoindentation and storage of teeth[J]. J Biomech, 2002, 35(7): 995-998.
    [26]
    Zhang D, Eggleton C D, Arola D. Evaluating the mechanical behavior of arterial tissue using digital image correlation[J]. Exp Mech, 2002, 42(4): 409-416.
    [27]
    Zhang D, Arola D. Application of digital image correlation to biological tissues[J]. J Biomed Opt, 2004, 9(4): 691-699.
    [28]
    Weber D F. Human dentine sclerosis: a microradiographic survey[J]. Arch Oral Biol, 1974, 19(2): 163-169.
    [29]
    Vasiliadis L, Darlin A I, Levers B G. The histology of sclerotic human root dentine[J]. Arch Oral Biol, 1983, 28(8): 693-700.
    [30]
    Nalbandian J, Gonzales F, Sognnaes R F. Sclerotic age changes in root dentin of human teeth as observed by optical, electron, and X-ray microscopy[J]. J Dent Res, 1960, 39: 598-607.
    [31]
    Vasiliadis L, Darling A I, Levers B G. The amount and distribution of sclerotic human root dentine[J]. Arch Oral Biol, 1983, 28(7): 645-649.
    [32]
    Micheletti C M. Dental histology: study of aging processes in root dentine[J]. Boll Soc Ital Biol Sper, 1998, 74(3/4): 19-28.
    [33]
    Van der Graaf E R, Ten Bosch J J. The uptake of water by freeze-dried human dentin sections[J]. Arch Oral Biol, 1990, 35(9): 731-739.
    [34]
    Shokouhinejad N, Nekoofar M H, Iravani A, Kharrazifard M J, Dummer P M. Effect of acidic environment on the push-out bond strength of mineral trioxide aggregate[J]. J Endod, 2010, 36(5): 871-874.
    [35]
    Prati C, Chersoni S, Mongiorgi R, Montanari G, Pashley D H. Thickness and morphology of resin-infiltrated dentin layer in young, old, and sclerotic dentin[J]. Oper Dent, 1999, 24(2): 66-72.
    [36]
    Tay F R, Pashley D H. Resin bonding to cervical sclerotic dentin: a review[J]. J Dent, 2004, 32(3): 173-196.
    [37]
    Zaslansky P, Friesem A A, Weiner S. Structure and mechanical properties of the soft zone separating bulk dentin and enamel in crowns of human teeth: insight into tooth function[J]. J Struct Biol, 2006, 153(2): 188-199.
    [38]
    Lopes M B, Sinhoreti M A, Gonini Júnior A, Consani S, McCabe J F. Comparative study of tubular diameter and quantity for human and bovine dentin at different depths[J]. Braz Dent J, 2009, 20(4): 279-283.
    [39]
    Arends J, Stokroos I, Jongebloed W G, Ruben J. The diameter of dentinal tubules in human coronal dentine after demineralization and air drying[J]. Caries Res, 1995, 29(2): 118-121.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1368) PDF downloads(784) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return