Zeraoulia Elhadj, J.C.Sprott. On the Non-Existence of Shilnikov Chaos in Continuous-Time Systems[J]. Applied Mathematics and Mechanics, 2012, 33(3): 353-356. doi: 10.3879/j.issn.1000-0887.2012.03.008
Citation: Zeraoulia Elhadj, J.C.Sprott. On the Non-Existence of Shilnikov Chaos in Continuous-Time Systems[J]. Applied Mathematics and Mechanics, 2012, 33(3): 353-356. doi: 10.3879/j.issn.1000-0887.2012.03.008

On the Non-Existence of Shilnikov Chaos in Continuous-Time Systems

doi: 10.3879/j.issn.1000-0887.2012.03.008
  • Received Date: 2011-03-07
  • Rev Recd Date: 2011-11-25
  • Publish Date: 2012-03-15
  • A non-existence condition for homoclinic and heteroclinic orbits in n-dimensional, continuous-time, smooth systems was obtained. Based on this result, and using an elementary example, it was conjectured that there was a fourth kind of chaos in polynomial ODE systems characterized by the nonexistence of homoclinic and heteroclinic orbits.
  • loading
  • [1]
    Aulbach B, Flockerzi D. The past in short hypercycles[J]. J Math Biol, 1989, 27(2): 223-231.
    [2]
    Balmforth N J. Solitary waves and homoclinic orbits[J]. Annual Review of Fluid Mechanics, 1995, 27: 335-373.
    [3]
    FENG Bei-ye. The heteroclinic cycle in the model of competition between n-species and its stability[J]. Acta Math Appl Sinica(English Series), 1998, 14(4): 404-413.
    [4]
    Shi’lnikov L P. A case of the existence of a countable number of periodic motions(point mapping proof of existence theorem showing neighborhood of trajectory which departs from and returns to saddle-point focus contains denumerable set of periodic motions)[J]. Translated by Puckette S. Sov Math, 1965, 6: 163-166.
    [5]
    Shi’lnikov L P. A contribution of the problem of the structure of an extended neighborhood of rough equilibrium state of saddle-focus type[J]. Translated by Cezus F A. Math U S S R Shornik, 1970, 10(1): 91-102.
    [6]
    Kennedy J, Kocak S, Yorke J A. A chaos lemma[J]. Amer Math Monthly, 2001, 108(5): 411-423.
    [7]
    Silva C P. Shi’lnikov theorem—a tutorial[J]. IEEE Trans Circuits Syst-Ⅰ, 2003, 40(10): 675-682.
    [8]
    Zhou T, Tang Y, Chen G. Chen’s attractor exists[J]. Int J Bifur & Chaos, 2004, 14(9): 3167-3177.
    [9]
    Tucker W. The Lorenz attractor exists[J]. C R Acad Paris, Ser Ⅰ Math, 1999, 328(15): 1197-1202.
    [10]
    Lu J H, Chen G, Cheng D, Celikovsky S. Bridge the gap between the Lorenz system and the Chen system[J]. Int J Bifur & Chaos, 2002, 12(12): 2917-2926.
    [11]
    Zhou T, Chen G, Celikovsky S. Si’lnikov chaos in the generalized Lorenz canonical form of dynamical systems[J]. Nonlinear Dynamics, 2005, 39(4): 319-334.
    [12]
    Sparrow C. The Lorenz Equations: Bifurcation, Chaos, and Strange Attractors[M]. New York: Springer-Verlag, 1982.
    [13]
    Cˇelikovsk S, Vanecˇěk A. Bilinear systems and chaos[J]. Kybernetika, 1994, 30(4): 403-424.
    [14]
    ZHOU Tian-shuo, CHEN Guang-rong. Classification of chaos in 3-D autonomous quadratic systems-Ⅰ: basic framework and methods[J]. Int J Bifur Chaos, 2006, 16(9): 2459-2479.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1317) PDF downloads(788) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return