Hasan Nemati, Mousa Farhadi, Kurosh Sedighi, Mohammad Mohammadi Pirouz, Nima Niksefat Abatari. Convective Heat Transfer From Two Rotating Circular Cylinders in Tandem Arrangement Using Lattice Boltzmann Method[J]. Applied Mathematics and Mechanics, 2012, 33(4): 406-424. doi: 10.3879/j.issn.1000-0887.2012.04.003
Citation: Hasan Nemati, Mousa Farhadi, Kurosh Sedighi, Mohammad Mohammadi Pirouz, Nima Niksefat Abatari. Convective Heat Transfer From Two Rotating Circular Cylinders in Tandem Arrangement Using Lattice Boltzmann Method[J]. Applied Mathematics and Mechanics, 2012, 33(4): 406-424. doi: 10.3879/j.issn.1000-0887.2012.04.003

Convective Heat Transfer From Two Rotating Circular Cylinders in Tandem Arrangement Using Lattice Boltzmann Method

doi: 10.3879/j.issn.1000-0887.2012.04.003
  • Received Date: 2011-05-11
  • Rev Recd Date: 2011-11-08
  • Publish Date: 2012-04-15
  • A numerical investigation of the two-dimensional laminar flow past two rotating circular cylinders in tandem arrangement using lattice Boltzmann method was conducted. The numerical strategy for dealing with curved and moving boundaries of second-order accuracy for velocity and temperature fields was used. The effects of variation of rotational speed ratio and different gap spacing were studied at Reynolds number of 100 and Prandtl number of 0.71. A various range of rotational speed ratio for four different gap spacing of 3, 1.5, 0.7 and 0.2 were investigated. Results show that, for the first cylinder lift and drag coefficients for large amounts of gap spacing are similar a single cylinder while for the second cylinder lift coefficient with increasing angular velocity for all gap spacing is descending but drag coefficient is ascending with the exception of gap spacing of 3. Results of the averaged periodic Nusselt number on the surface of cylinders show that for small distance between cylinders and low angular velocity, conduction is dominant mechanism of heat transfer but for large distance and high angular velocity convection is main mechanism of heat transfer.
  • loading
  • [1]
    Nakamura H, Igarashi T. Unsteady heat transfer from a circular cylinder for Reynolds numbers from 3 000 to 15 000[J]. International Journal of Heat and Fluid Flow, 2004, 25(5): 741-748.
    [2]
    陆夕云, 凌国灿. 圆柱振荡绕流的三维不稳定性研究[J]. 应用数学和力学, 2003, 24 (7): 699-707. (LU Xi-yun, LING Guo-can. Three-dimensional instability of an oscillating viscous flow past a circular cylinder[J]. Applied Mathematics and Mechanics(English Edition), 2003, 24(7): 791-800.)
    [3]
    Mohammed H A, Salman Y K. Experimental investigation of mixed convection heat transfer for thermally developing flow in a horizontal circular cylinder[J]. Applied Thermal Engineering, 2007, 27(8/9): 1522-1533.
    [4]
    Fetecau C, Akhtar W, Imran M A, Vieru D. On the oscillating motion of an Oldroyd-B fluid between two infinite circular cylinders[J]. Computers & Mathematics With Applications, 2010, 59(8): 2836-2845.
    [5]
    Coutanceau M, Menard C. Influence of rotation on the near-wake development behind an impulsively started circular cylinder[J]. Journal of Fluid Mechanics, 1985, 158: 399-466.
    [6]
    Sohankar A, Norberg C, Davidson L. Simulation of three-dimensional flow around a square cylinder at moderate Reynolds number[J]. Physics of Fluids, 1999, 11(2): 288-306.
    [7]
    Zdravkovich M M. Review of flow interference between two circular cylinders in various arrangements[J]. ASME Journal of Fluid Engineering, 1977, 99(4): 618-633.
    [8]
    Zdravkovich M M. Flow induced oscillations of two interfering circular cylinders[J]. Journal of Sound and Vibration, 1985, 101(4): 511-521.
    [9]
    Yoon H S, Chun H H, Kim J H, Park I L R. Flow characteristics of two rotating side-by-side circular cylinder[J]. Computers and Fluids, 2009, 38(2): 466-474.
    [10]
    Mittal S, Kumar V, Raghuvanshi A. Unsteady incompressible flows past two cylinders in tandem and staggered arrangements[J]. International Journal for Numerical Methods in Fluids, 1997, 25(11): 1315-1344.
    [11]
    Meneghini J R, Saltara F, Siqueira C L R, Ferrari J A. Numerical simulation of flow interference between two circular cylinders in tandem and side-by-side arrangements[J]. Journal of Fluids and Structures, 2001, 15(2): 327-350.
    [12]
    Nemati H, Sedighi K, Farhadi M, Pirouz M M, Fattahi E. Numerical simulation of fluid flow around two rotating side by side circular cylinders by lattice Boltzmann method[J]. International Journal of Computational Fluid Dynamics, 2010, 24(3/4): 83-94.
    [13]
    Nemati H, Farhadi M, Sedighi K, Fattahi E, Darzi A A R. Lattice Boltzmann simulation of nanofluid in lid-driven cavity[J]. International Communications in Heat and Mass Transfer, 2010, 37(10): 1528-1534.
    [14]
    Kareem W A, Izawa S, Xiong A K, Fukunishi Y. Lattice Boltzmann simulations of homogeneous isotropic turbulence[J]. Computers & Mathematics With Applications, 2009, 58(5): 1055-1061.
    [15]
    Lee K, Yu D, Girimaji S S. Lattice Boltzmann DNS of decaying compressible isotropic turbulence with temperature fluctuations[J]. International Journal of Computational Fluid Dynamics, 2006, 20(6): 401-413.
    [16]
    许友生, 刘慈群, 俞慧丹. 多孔介质中两相驱离的格子Boltzmann模型新研究[J]. 应用数学和力学,2002, 23(4): 353-358. (XU You-sheng, LIU Ci-qun, YU Hui-dan. New studying of lattice Boltzmann method for two-phase driven in porous media[J]. Applied Mathematics and Mechanics (English Edition), 2002, 23(4): 387-393.)
    [17]
    Yiotis A G, Kainourgiakis M E, Kikkinides E S, Stubos A K. Application of the lattice-Boltzmann method to the modeling of population blob dynamics in 2D porous domains[J]. Computers & Mathematics With Applications, 2010, 59(7): 2315-2325.
    [18]
    Fattahi E, Farhadi M, Sedighi K. Lattice Boltzmann simulation of natural convection heat transfer in eccentric annulus[J]. International Journal of Thermal Science, 2010, 49(12): 2353-2362.
    [19]
    李元,段雅丽,郭彦,刘儒勋. 层射流的格子Boltzmann方法的数值模拟[J]. 应用数学和力学,2009, 30 (4): 417-424. (LI Yuan, DUAN Ya-li, GUO Yan, LUI Ru-xun. Numerical simulation of laminar jet-forced flow using lattice Boltzmann method[J]. Applied Mathematics and Mechanics (English Edition), 2009, 30(4): 445-453.)
    [20]
    Premnath K N, Abraham J. Three-dimensional multi-relaxation time (MRT) lattice-Boltzmann models for multiphase flow[J]. Journal of Computational Physics, 2007, 224(2): 539-559.
    [21]
    Yu D, Mei R, Luo L S, Shyy W. Viscous flow computations with the method of lattice Boltzmann equation[J]. Progress in Aerospace Sciences, 2003, 39(5): 329-367.
    [22]
    Guo Z, Shi B, Zheng C. A coupled lattice BGK model for the Boussinesq equations[J]. International Journal for Numerical Methods in Fluids, 2002, 39(4): 325-342.
    [23]
    Barrios G, Rechtman R, Rojas J, Tovar R. The lattice Boltzmann equation for natural convection in a two-dimensional cavity with a partially heated wall[J]. Journal of Fluid Mechanics, 2005, 522: 91-100.
    [24]
    Mei R, Yu D, Shyy W, Luo L S. Force evaluation in the lattice Boltzmann method involving curved geometry[J]. Physical Review E, 2002, 65(4): 1/041203-14/041203.
    [25]
    Huang H B, Lee T S, Shu C. Thermal curved boundary treatment for the thermal lattice Boltzmann equation[J]. International Journal of Modern Physics C, 2006, 17(5): 631-643.
    [26]
    Yan Y Y, Zu Y Q. Numerical simulation of heat transfer and fluid flow past a rotating isothermal cylinder—a LBM approach[J]. International Journal of Heat and Mass Transfer, 2008, 51(9/10): 2519-2536.
    [27]
    Huang H B, Lu X Y, Sukop M C. Numerical study of lattice Boltzmann methods for a convection-diffusion equation coupled with Navier-Stokes equations[J]. Journal of Physics A: Mathematical and Theoretical, 2011, 44(5): 055001.
    [28]
    Lai H, Yan Y Y. The effect of choosing dependent variables and cell-face velocities on convergence of the SIMPLE algorithm using non-orthogonal grids[J]. International Journal of Numerical Methods for Heat and Fluid Flow, 2001, 11(6): 524-546.
    [29]
    Eckert E R G, Soehngen E. Distribution of heat transfer coefficients around circular cylinders in cross-flow at Reynolds numbers from 20 to 500[J]. Transaction of the ASME, 1952, 74(3): 343-347.
    [30]
    Teng S, Chen Y, Ohashi H. Lattice Boltzmann simulation of multiphase fluid flows through the total variation diminishing with artificial compression scheme[J]. International Journal of Heat and Fluid Flow, 2000, 21(1): 112-121.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1566) PDF downloads(736) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return