Sukla Banik, M.Kanoria. Effects of Three-Phase-Lag on Two Temperature Generalized Thermoelasticity for an Infinite Medium With a Spherical Cavity[J]. Applied Mathematics and Mechanics, 2012, 33(4): 460-474. doi: 10.3879/j.issn.1000-0887.2012.04.007
Citation: Sukla Banik, M.Kanoria. Effects of Three-Phase-Lag on Two Temperature Generalized Thermoelasticity for an Infinite Medium With a Spherical Cavity[J]. Applied Mathematics and Mechanics, 2012, 33(4): 460-474. doi: 10.3879/j.issn.1000-0887.2012.04.007

Effects of Three-Phase-Lag on Two Temperature Generalized Thermoelasticity for an Infinite Medium With a Spherical Cavity

doi: 10.3879/j.issn.1000-0887.2012.04.007
  • Received Date: 2010-12-20
  • Rev Recd Date: 2011-10-15
  • Publish Date: 2012-04-15
  • The thermoelastic interaction for the three-phase-lag heat equation in an isotropic infinite elastic body with a spherical cavity was studied in the context of two temperature generalized thermoelasticity theory (2TT). The heat conduction equation in the theory of three-phase-lag was a hyperbolic partial differential equation with a fourth order derivative with respect to time. The medium was assumed initially quiescent. By using the Laplace transformation, the fundamental equations had been expressed in the form of a vector-matrix differential equation, which was then solved by state space approach. The general solution obtained was applied to a specific problem, when the boundary of the cavity was subjected to thermal loading (thermal shock and ramp type heating) and the mechanical loading. The inversion of the Laplace transform was carried out by the Fourier series expansion techniques. The numerical values of the physical quantity were computed for copper like material. Significant dissimilarities between two models (two temperature Green-Naghdi theory with energy dissipation (2TGNIII) and two temperature three-phase-lag model (2T3phase)) were shown graphically. The effect of two temperature and the ramping parameters were also studied.
  • loading
  • [1]
    Gurtin M E, Williams W O. On the clausius-duhem inequality[J]. Zeitschrift angewandte Mathematik und Physik, 1966, 17(5): 626-633.
    [2]
    Gurtin M E, Williams W O. An axiomatic foundation for continuum thermodynamics[J]. Archieve for Rational Mechanics and Analysis, 1967, 26(2): 83-117.
    [3]
    Chen P J, Gurtin M E. On a theory of heat conduction involving two temperatures[J]. Zeitschrift angewandte Mathematik und Physik, 1968, 19(4): 614-627.
    [4]
    Chen P J, Gurtin M E, Williams W O. A note on non simple heat conduction[J]. Zeitschrift für Angewandte Mathematik und Physik, 1968, 19(6): 969-970.
    [5]
    Chen P J, Gurtin M E, Williams W O. On the thermodynamics of non-simple elastic materials with two temperatures[J]. Zeitschrift für Angewandte Mathematik und Physik, 1969, 20(1): 107-112.
    [6]
    Warren W E, Chen P J. Wave propagation in two temperatures theory of thermoelasticity[J]. Acta Mechanica, 1973, 16(1/2): 83-117.
    [7]
    Lesan D. On the thermodynamics of non-simple elastic materials with two temperatures[J]. Journal of Applied Mathematics and Physics, 1970, 21(4): 583-591.
    [8]
    Puri P, Jordan P M. On the propagation of harmonic plane waves under the two-temperature theory[J]. International Journal of Engineering Sciences, 2006, 44(17): 1113-1126.
    [9]
    Quintanilla R. On existence, structural stability, convergence and spatial behavior in thermoelasticity with two temperatures[J].Acta Mechanica, 2004, 168(1/2): 61-73.
    [10]
    Lord H, Shulman Y. A generalized dynamical theory of thermoelasticity[J]. Journal of Mechanics and Physics of Solids, 1967, 15(5): 299-309.
    [11]
    Ignaczak J. Uniqueness in generalized thermoelasticity[J]. Journal of Thermal Stresses, 1979, 2(2): 171-175.
    [12]
    Ignaczak J. A note on uniqueness in thermoelasticity with one relaxation time[J]. Journal of Thermal Stresses, 1982, 5(3/4): 257-263.
    [13]
    Dhaliwal R S,Sherief H. Generalized thermoelasticity for anisotropic media[J]. Quarterly of Applied Mathematics, 1980,33: 1-8.
    [14]
    Sherief H. On uniqueness and stability in generalized thermoelasticity[J]. Quarterly of Applied Mathematics, 1987, 45: 773-778.
    [15]
    Ackerman C C, Bertman B, Fairbank H A, Guyer R A.Second sound in solid helium[J]. Physical Review Letter, 1967, 16(18): 789-309.
    [16]
    Ackerman C C, Guyer R A. Temperature pulses in dialectic solids[J]. Annals of Physics, 1968, 50(1): 128-185.
    [17]
    Ackerman C C,Overton Jr W C. Second sound in solid helium-3[J]. Physical Review Letter, 1969, 22(15): 764-766.
    [18]
    Von Gutfeld R J, Nethercot Jr A H. Temperature dependent of heat pulse propagation in saphire[J]. Physical Review Letter, 1966, 17(16): 868-871.
    [19]
    Guyer R A, Krumhansi J A. Solution of the linearized phonon Boltzmann equation[J]. Physical Review, 1966, 148(2):766-778.
    [20]
    Taylor B, Marris H J, Elbaum C. Phonon focusing in solids[J]. Physical Review Letter, 1969, 23(8): 416-419.
    [21]
    Rogers S J. Transport of heat and approach to second sound in some isotropically pure Alkali-Halide crystals[J].Physical Review B, 1971, 3(7): 1440-1457.
    [22]
    Jackson H E, Walker C T. Thermal conductivity, second sound and phonon-phonon interactions in NaF[J]. Physical Review B, 1971, 3(4): 1428-1439.
    [23]
    Jackson H E, Walker C T, McNelly T F. Second sound in NaF[J]. Physical Review Letter, 1970, 25(1): 26-28.
    [24]
    Green A E, Lindsay K A. Thermoelasticity[J]. Journal of Elasticity, 1972, 2(1): 1-7.
    [25]
    Ghosh M K, Kanoria M. Analysis of thermoelastic response in a functionally graded spherically isotropic hollow sphere based on Green-Lindsay theory[J]. Acta Mechanica, 2009, 207(1/2): 51-67.
    [26]
    Hetnarski R B, Ignaczak J. Generalized Thermoelasticity: closed form solutions[J]. Journal of Thermal Stresses, 1993, 16(4): 473-498.
    [27]
    Hetnarski R B, Ignaczak J. Generalized thermoelasticity: response of semi-space to a short laser pulse[J]. Journal of Thermal Stresses, 1994, 17(3): 377-396.
    [28]
    Green A E, Naghdi P M. A re-examination of the basic results of thermomechanics[J]. Proceedings: Mathematical and Physical Sciences, 1991, 432(2): 171-194.
    [29]
    Green A E, Naghdi P M. On undamped heat waves in an elastic solid[J]. Journal of Thermal Stresses, 1992, 15(2): 252-264.
    [30]
    Green A E, Naghdi P M. Thermoelasticity without energy dissipation[J]. Journal of Elasticity, 1993, 31(3): 189-208.
    [31]
    Bagri A, Eslami M R. Generalized coupled themo-elasticity of disks based on Lord-Shulman model[J].Journal of Thermal Stresses, 2004, 27(8): 691-704.
    [32]
    Kar A, Kanoria M. Thermoelastic interaction with energy dissipation in an infinitely extended thin plate containing a circular hole[J]. Far East Journal of Applied Mathematics, 2006, 24(2):201-217.
    [33]
    Kar A, Kanoria M. Thermoelastic interaction with energy dissipation in an unbounded body with a spherical hole[J]. International Journal of Solids and Structures, 2007, 44(9):2961-2971.
    [34]
    Kar A, Kanoria M. Thermoelastic interaction with energy dissipation in a transversely isotropic thin circular disc[J]. Europian Journal of Mechanics A/Solids, 2007, 26(6):969-981.
    [35]
    Das N C, Lahiri A. Thermo-elastic interactions due to prescribed pressure inside a spherical cavity in an unbounded medium[J]. International Journal of Pure and Applied Mathematics, 2000, 31(1): 19-32.
    [36]
    Roychoudhuri S K, Dutta P S. Thermoelastic interaction without energy sissipation in an infinite solid with distributed periodically varrying heat sources[J]. International Journal of Solids and Structures, 2005, 42(14): 4192-4203.
    [37]
    Roychoudhuri S K, Bandyopadhyay N. Thermoelastic wave propagation in a rotating elastic medium without energy dissipation[J]. International Journal of Mathematics and Mathematical Sciences, 2004, 1(1): 99-107.
    [38]
    Ghosh M K, Kanoria M. Generalized thermo-elastic problem of a spherically isotropic elastic medium containing a spherical cavity[J]. Journal of Thermal Stresses, 2008, 31(8): 665-679.
    [39]
    Tzou D Y. A unified field approach for heat conduction from macro to micro scales[J]. ASME Journal of Heat Transfer, 1995, 117(1): 8-16.
    [40]
    Chandrasekharaiah D S. Hyperbolic thermoelasticity: A review of recent literature[J]. Applied Mechanics Review, 1998, 51(12): 705-729.
    [41]
    Roychoudhuri S K. One-dimensional thermoelastic waves in elastic half-space with dual-phase-lag effects[J]. Journal of Mechanics of Materials and Structures, 2007, 2(1): 489-503.
    [42]
    Roychoudhuri S K. On a thermoelastic three-phase-lag model[J]. Journal of Thermal Stresses, 2007, 30(3): 231-238.
    [43]
    Kar A, Kanoria M. Generalized thermoelastic functionally graded orthotropic hollow sphere under thermal shock with three-phase-lag effect[J]. Europian Journal of Mechanics A/Solids, 2009, 28(4): 757-767.
    [44]
    Kar A, Kanoria M. Generalized thermoe-visco-elastic problem of a spherical shell with three-phase-lag effect[J]. Applied Mathematics and Modelling, 2009, 33(8): 3287-3298.
    [45]
    Quintanilla R, Racke R. A note on stability in three-phase-lag heat conduction[J]. International Journal of Heat and Mass Transfer, 2008, 51(1/2): 24-29.
    [46]
    Quintanilla R. Spatial behaviour of solutions of the three-phase-lag heat equation[J]. Applied Mathematics and Computation, 2009, 213(1): 153-162.
    [47]
    Youssef H M. Theory of two-temperature generalized thermoelasticity[J]. IMA Journal of Applied Mathematics, 2006, 71(3): 1-8.
    [48]
    Youssef H M, Al-Harby A H. State-space approach of two temperature generalized thermoelasticity of infinite body with a spherical cavity subjected to different type thermal loading[J]. Archives of Applied Mecha
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1446) PDF downloads(887) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return