WANG Yong-wei, LU Tao, JIANG Pei-xue, CHENG Peng-fei, WANG Kui-sheng. LES of Fluid Mixing in a Tee With a Sintered Porous Medium[J]. Applied Mathematics and Mechanics, 2012, 33(7): 856-867. doi: 10.3879/j.issn.1000-0887.2012.07.006
Citation: WANG Yong-wei, LU Tao, JIANG Pei-xue, CHENG Peng-fei, WANG Kui-sheng. LES of Fluid Mixing in a Tee With a Sintered Porous Medium[J]. Applied Mathematics and Mechanics, 2012, 33(7): 856-867. doi: 10.3879/j.issn.1000-0887.2012.07.006

LES of Fluid Mixing in a Tee With a Sintered Porous Medium

doi: 10.3879/j.issn.1000-0887.2012.07.006
  • Received Date: 2011-06-10
  • Rev Recd Date: 2012-04-06
  • Publish Date: 2012-07-15
  • Mixing processes of hot and cold fluids in a tee with and without sintered copper spheres were simulated by FLUENT using the large-eddy simulation (LES) turbulent flow model and the sub-grid scale (SGS) Smagorinsky-Lilly (SL) model with buoyancy. Comparisons of the numerical results of the two cases with and without sintered copper spheres show that the porous medium significantly reduces the velocity and temperature fluctuations, because the porous medium can effectively restrict the fluid flow and enhance heat transfer. The porous media obviously increase the pressure drop in the main duct. The porous medium reduces the PSD of the temperature fluctuations in the frequency range from 1 Hz to 10 Hz.
  • loading
  • [1]
    朱维宇, 卢涛, 姜培学, 郭志军, 王奎升. T型管中冷热流体混合过程热波动大涡模拟[J]. 应用数学和力学, 2009, 30(11): 1295-1306. (ZHU Wei-yu, LU Tao, JIANG Pei-xue, GUO Zhi-jun, WANG Kui-sheng. Large eddy simulation of hot and cold fluids mixing in a T-junction for predicting thermal fluctuations[J].Applied Mathematics and Mechanics(English Edtion), 2009, 30(11): 1379-1392.)
    [2]
    Kuhn S, Braillard O, Niceno B, Prasser H M. Computational study of conjugate heat transfer in T-junctions[J]. Nuclear Engineering and Design, 2010, 240(6): 1548-1557.
    [3]
    Lee J I, Hu L W, Saha P, Kazimi M S. Numerical analysis of thermal striping induced high cycle thermal fatigue in a mixing tee[J].Nuclear Engineering and Design, 2009, 239(5): 833-839.
    [4]
    Frank T, Lifante C, Prasser H M, Menter F. Simulation of turbulent and thermal mixing in T-junctions using URANS and scale-resolving turbulence models in ANSYS CFX[J].Nuclear Engineering and Design, 2010, 240(9): 2313-2328.
    [5]
    Metzner K J, Wilke U. European THERFAT project—thermal fatigue evaluation of piping system “Tee”-connections[J].Nuclear Engineering and Design, 2005, 235(2/4): 473-484.
    [6]
    Kuczaj A K, Komen E M J, Loginov M S. Large-eddy Simulation study of turbulent mixing in a T-junction[J]. Nuclear Engineering and Design, 2010, 240(9): 2116-2122.
    [7]
    Hu L W, Kazimi M S. LES benchmark study of high cycle temperature fluctuations caused by thermal striping in a mixing tee[J]. International Journal of Heat and Fluid Flow, 2006, 27(1): 54-64.
    [8]
    Simoneau J P, Champigny J, Gelineau O. Applications of large eddy simulations in nuclear field[J]. Nuclear Engineering and Design, 2010, 240(2): 429-439.
    [9]
    Whitaker S. Simultaneous heat, mass, and momentum transfer in porous media: a theory of drying[J]. Advances in Heat Transfer, 1977, 13: 119-203.
    [10]
    Jang J Y, Chen J L. Forced convection in a parallel plate channel partially filled with a high porosity medium[J]. International Communications in Heat and Mass Transfer, 1992, 19(2): 263-273.
    [11]
    Saito M B, Lemos M J S d. A macroscopic two-energy equation model for turbulent flow and heat transfer in highly porous media[J]. International Journal of Heat and Mass Transfer, 2010, 53(11/12): 2424-2433.
    [12]
    Yang Y T, Hwang M L. Numerical simulation of turbulent fluid flow and heat transfer characteristics in heat exchangers fitted with porous media[J]. International Journal of Heat and Mass Transfer, 2009, 52(13/14): 2956-2965.
    [13]
    Huang Z F, Nakayama A, Yang K, Yang C, Liu W. Enhancing heat transfer in the core flow by using porous medium insert in a tube[J]. International Journal of Heat and Mass Transfer, 2010, 53(5/6): 1164-1174.
    [14]
    Amiri A, Vafai K. Analysis of dispersion effects and non-thermal equilibrium, non-Darcian, variable porosity incompressible flow through porous media[J]. International Journal of Heat and Mass Transfer, 1994, 37(6): 939-954.
    [15]
    Quintard M, Whitaker S. Local thermal equilibrium for transient heat conduction: theory and comparison with numerical experiments[J]. International Journal of Heat and Mass Transfer, 1995, 38(15): 2779-2796.
    [16]
    Whitaker S. Improved constraints for the principle of local thermal equilibrium[J]. Ind Eng Chem Res, 1991, 30(5): 983-997.
    [17]
    Lu T, Jiang P X, Guo Z J, Zhang Y W, Li H. Large-eddy simulations (LES) of temperature fluctuations in a mixing tee with/without a porous medium[J]. International Journal of Heat and Mass Transfer, 2010, 53(21/22): 4458-4466.
    [18]
    Saito M B, Lemos M J S d. Interfacial heat transfer coefficient for non-equilibrium convective transport in porous media[J]. International Communications in Heat and Mass Transfer, 2005, 32(5): 666-676.
    [19]
    Saito M B, Lemos M J S d. Laminar heat transfer in a porous channel simulated with a two-energy equation model[J]. International Communications in Heat and Mass Transfer, 2009, 36(10): 1002-1007.
    [20]
    Kuwahara F, Shirota M, Nakayama A. A numerical study of interfacial convective heat transfer coefficient in two-energy equation model for convection in porous media[J]. International Journal of Heat and Mass Transfer, 2001, 44(6): 1153-1159.
    [21]
    Jiang P X, Meng Li, Ma Y C, Ren Z P. Boundary conditions and wall effect for forced convection heat transfer in sintered porous plate channels[J]. International Journal of Heat and Mass Transfer, 2004, 47(10/11): 2073-2083.
    [22]
    Jiang P X, Ren Z P. Numerical investigation of forced convection heat transfer in porous media using a thermal non-equilibrium model[J]. International Journal of Heat and Fluid Flow, 2001. 22(1): 102-110.
    [23]
    Wakao N, Kaguei S, Funazkri T. Effect of fluid dispersion coefficients on particle-to-fluid heat transfer coefficients in packed bed[J]. Chemical Engineering Science, 1979, 34(3): 325-336.
    [24]
    Jiang P X, Lu X C. Numerical simulation of fluid flow and convection heat transfer in sintered porous plate channels[J]. International Journal of Heat and Mass Transfer, 2006, 49(9/10): 1685-1695.
    [25]
    Kuwahara F, Yamane T, Nakayama A. Large eddy simulation of turbulent flow in porous media[J]. International Communications in Heat and Mass Transfer, 2006, 33(4): 411-418.
    [26]
    Fukushima N, Fukagata K, Kasagi N. Numerical and experimental study on turbulent thermal mxing in a t-junction flow[C]The 6th ASME-JSME Thermal Engineering Joint Conference.USA: Hawaii, 2003.
    [27]
    Pope S B. Turbulence Flow[M]. Cambridge: Cambridge University Press, 2000.
    [28]
    Temmerman L, Leschziner M A, Mellen C P, Frhlich, J. Investigation of wall-function approximations and subgrid-scale models in large eddy simulation of separated flow in a channel with streamwise periodic constrictions[J]. International Journal of Heat and Fluid Flow, 2003, 24 (2): 157-180.
    [29]
    Majander P, Siikonen T. Large-eddy simulation of a round jet in a cross-flow[J]. International Journal of Heat and Fluid Flow, 2006, 27(3): 402-415.
    [30]
    Wegner B, Huai Y, Sadiki A. Comparative study of turbulent mixing in jet in cross-flow configurations using LES[J]. International Journal of Heat and Fluid Flow, 2004, 25(5): 767-775.
    [31]
    Smagorinsky J. General circulation experiments with the primitive equations—Ⅰ: the basic experiment[J]. Monthly Weather Review, 1963, 91(3): 99-164.
    [32]
    Lilly D K. On the application of the eddy viscosity concept in the inertial subrange of turbulence
    [33]
    [R]. No. 123. NCAR Manuscript, 1966.
    [34]
    Wang Y, Yuan G, Yoon Y K, Allen M G, Bidstrup S A. Large eddy simulation (LES) for synthetic jet thermal management[J]. International Journal of Heat and Mass Transfer, 2006,49 (13/14): 2173-2179.
    [35]
    Kimura K. Thermal striping in mixing tees with hot and cold water (Type A: Characteristics of flow visualization and temperature fluctuations in collision type mixing tees with same pipe diameter)[C]NTHAS3: Third Korea-Japan Symposium on Nuclear Thermal Hydraulics and Safety, Korea, 2002.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1202) PDF downloads(839) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return