ZU Hong-biao, ZHOU Zhe-wei, WANG Zhi-liang. Properties of acoustic resonance in double-actuator ultra-sonic gas nozzle: numerical study[J]. Applied Mathematics and Mechanics, 2012, 33(12): 1379-1391. doi: 10.3879/j.issn.1000-0887.2012.12.001
Citation: ZU Hong-biao, ZHOU Zhe-wei, WANG Zhi-liang. Properties of acoustic resonance in double-actuator ultra-sonic gas nozzle: numerical study[J]. Applied Mathematics and Mechanics, 2012, 33(12): 1379-1391. doi: 10.3879/j.issn.1000-0887.2012.12.001

Properties of acoustic resonance in double-actuator ultra-sonic gas nozzle: numerical study

doi: 10.3879/j.issn.1000-0887.2012.12.001
Funds:  Project supported by the National Natural Science Foundation of China (Nos. 10772107, 10702038, and 11172163), the E-Institutes of Shanghai Municipal Education Commission, and the Shanghai Program for Innovative Research Team in Universities
  • Received Date: 2011-02-14
  • Rev Recd Date: 2012-09-21
  • Publish Date: 2012-12-15
  • The ultra-sonic gas atomization (USGA) nozzle is an important apparatus in the metal liquid air-blast atomization process. It can generate oscillating supersonic gas efflux, which is proved to be effective to enforce the atomization and produce narrow-band particle distributions. A double-actuator ultra-sonic gas nozzle is proposed in the present paper by joining up two active signals at the ends of the resonance tubes. Numerical sim-ulations are adopted to study the effects of the flow development on the acoustic resonant properties inside the Hartmann resonance cavity with/without actuators. Comparisons show that the strength and the onset process of oscillation are enhanced remarkably with the actuators. The multiple oscillating amplitude peaks are found on the response curves, and two kinds of typical behaviors, i.e., the Hartmann mode and the global mode, are discussed for the corresponding frequencies. The results for two driving actuators are also investigated. When the amplitudes, the frequencies, or the phase difference of the input signals of the actuators are changed, the oscillating amplitudes of gas efflux can be altered effectively.
  • loading
  • [1]
    Hartmann J, Trolle B. A new acoustic generator[J]. J Sci Instr, 1927, 4(4): 101-111.
    [2]
    Raman G, Srinivasan K. The powered resonance tube:from Hartmann’s discovery to current active flow control applications[J]. Progress in Aerospace Sciences, 2009, 45(4/5): 97-123.
    [3]
    Grant N J. Rapid solidification of metallic particulates[J]. Journal of Metals, 1983, 35: 20-27.
    [4]
    Ayres J D, Anderson I E. Method for Generating Fine Sprays of Molten Metal for Spray Coating and Powder Making: USA, 4619845[P]. 1986.
    [5]
    Allimant A, Planche M P, Bailly Y, Dembinski L, Coddet C. Progress in gas atomization of liquid metals by means of a De Laval nozzle[J]. Powder Technology, 2009, 190(1/2): 79-83.
    [6]
    Zhao W J, Cao F Y, Ning Z L, Zhang G Q, Li Z, Sun J. A computational fluid dynamics (CFD) investigation of the flow field and the primary atomization of the close coupled atomizer[J]. Computers and Chemical Engineering, 2012, 40: 58-66.
    [7]
    Mullis A M, McCarthy I N, Cochrane R F. High speed imaging of the flow during closecoupled gas atomization:effect of melt delivery nozzle geometry[J]. Journal of Materials Processing Technology, 2011, 211(9): 1471-1477.
    [8]
    Rai G, Lavernia E J, Grant N J. Powder size and distribution in ultrasonic gas atomization[J]. Journal of Metals, 1985, 37(8): 22-26.
    [9]
    李博, 胡国辉, 周哲玮. Hartmann管及超音速雾化喷嘴流场的数值模拟[J]. 应用数学和力学, 2007, 28(11): 12611271. (LI Bo, HU Guo-hui, ZHOU Zhe-wei. Numerical simulation of flow in Hartmann resonance tube and flow in ultrasonic gas atomizer[J]. Applied Mathematics and Mechanics (English Edition), 2007, 28(11): 1415-1426.)  
    [10]
    Zhou Z W, Tang X D. The effect of the pulsation in gas flow on the stability of melted metal jet[C]//Fourth International Conference on Spray Forming. Baltimore, USA: University of Maryland Press, 1999.
    [11]
    Veistinen M K, Lavernia E J, Baram J C, Grant N J. Jet behavior in ultrasonic gas atomization[J].The International Journal of Powder Metallurgy, 1989, 25(2): 89-92.
    [12]
    Mansour A, Chigier N, Shih T, Kozarek R L. The Effects of the Hartman cavity on the performance of the USGA nozzle needed for aluminum spray forming[J]. Atomization and Sprays, 1998, 1: 1-24.
    [13]
    王志亮. 十字形气体共振频率发生器: 中国:200810203978.2[P].2008-05-20. (WANG Zhi-liang. Actuator Driven UltraSonic Gas Atomization Nozzle: P.R.China, 200810203978[P]. 2008-05-20.(in Chinese)) 
    [14]
    ZU Hong-biao, WANG Zhi-liang. Resonant behaviors of an ultra sonic gas atomization nozzle with a zero mass-flux jet actuator[J]. Journal of Shanghai University(English Edition), 2011, 15(3): 166-172.
    [15]
    Spalart P, Allmaras S. A oneequation turbulence model for aerodynamic flows[R]. American Institute of Aeronautics and Astronautics, Technical Report AIAA92-0439.
    [16]
    Sreejith G J, Narayanan S, Jothi T J S, Srinivasan K. Studies on conical and cylindrical resonators[J]. Appl Acoust, 2008, 69(12): 1161-1175.
    [17]
    Brocher E, Maresca A, Bournay M H. Fluid dynamics of the resonance tube[J]. J Fluid Mech, 1970, 43: 369-384.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2571) PDF downloads(1336) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return