MA Yu-li, CHEN Ji-wei, LIU Yong-quan, SU Xian-yue. Vibration analysis of foam plates based on cell volume distribution[J]. Applied Mathematics and Mechanics, 2012, 33(12): 1392-1402. doi: 10.3879/j.issn.1000-0887.2012.12.002
Citation: MA Yu-li, CHEN Ji-wei, LIU Yong-quan, SU Xian-yue. Vibration analysis of foam plates based on cell volume distribution[J]. Applied Mathematics and Mechanics, 2012, 33(12): 1392-1402. doi: 10.3879/j.issn.1000-0887.2012.12.002

Vibration analysis of foam plates based on cell volume distribution

doi: 10.3879/j.issn.1000-0887.2012.12.002
Funds:  Project supported by the National Natural Science Foundation of China (No. 90916007)
  • Received Date: 2011-03-14
  • Rev Recd Date: 2012-04-12
  • Publish Date: 2012-12-15
  • In this paper, vibration analysis of irregular-closed-cell foam plates is per-formed. A cell volume distribution coefficient is introduced to modify the original Gibson-Ashby equations of effective Young’s modulus of foam materials. A Burr distribution is imported to describe the cell volume distribution situation. Three Burr distribution pa-rameters are obtained and related to the cell volume range and the diversity. Based on the plate theory and the effective modulus theory, the natural frequency of foam plates is calculated with the change of the cell volume distribution parameters. The relationship between the frequencies and the cell volumes are derived. The scale factor of the average cell size is introduced and proved to be an important factor to the performance of the foam plate. The result is shown by the existing theory of size effects. It is determined that the cell volume distribution has an impact on the natural frequency of the plate structure based on the cell volume range, the diversity, and the average size, and the impact can lead to optimization of the synthesis procedure
  • loading
  • [1]
    Gibson L J, Ashby M F. Cellular Solids: Structure and Properties[M]. 2nd ed. Cambridge: Press Syndicate of University of Cambridge, 1997. 
    [2]
    Hausherr J M, Krenkel W, Fischer F, Altstadt V. Nondestructive characterization of highperformance C/SiCceramics using X-ray-computed tomography[J]. International Journal of Applied Ceramic Technology, 2010, 7(3): 361-368. 
    [3]
    Marmottant A, Salvo L, Martin C L, Mortensen A. Coordination measurements in compacted NaCl irregular powders using Xray microtomography[J]. Journal of the European Ceramic Society, 2008, 28(13): 24412449.  
    [4]
    Guo L W, Yu J L. Bending behavior of aluminum foamfilled double cylindrical tubes[J]. Acta Mechanica, 2011, 222(3/4): 233-244.  
    [5]
    Kurpa L, Pilgun G, Amabili M. Nonlinear vibrations of shallow shells with complex boundary: R-functions method and experiments[J].Journal of Sound and Vibration, 2007, 306(3/5): 580-600. 
    [6]
    Elliott J A, Windle A H, Hobdell J R, Eeckhaut G, Oldman R J, Ludwig W, Boller E, Cloetens P, Baruchel J. In-situ deformation of an open-cell flexible polyurethane foam characterised by 3D computed microtomography[J]. Journal of Materials Science, 2002, 37(8): 1547-1555.  
    [7]
    Qian L F, Batra R C, Chen L M. Static and dynamic deformations of thick functionally graded elastic plates by using higher-order shear and normal deformable plate theory and meshless local PetrovGalerkin method[J].Composites Part B: Engineering, 2004, 35(6/8): 685-697. 
    [8]
    Viot P, Plougonven E, Bernard D. Microtomography on polypropylene foam under dynamic loading: 3D analysis of bead morphology evolution[J]. Composites Part A: Applied Science and Manufacturing, 2008, 39(8): 1266-1281.  
    [9]
    Van Dommelen J A W, Wismans J G F, Govaert L E. Xray computed tomographybased modeling of polymeric foams: the effect of finite element model size on the large strain response[J]. Journal of Polymer Science Part BPolymer Physics, 2010, 48(13): 1526-1534.  
    [10]
    Ashby M F. Materials Selection in Mechanical Design[M]. 2nd ed. Oxford: Butterworth Heinemann, 1999. 
    [11]
    Ashby M F. Designing hybrid materials[J]. Acta Materialia, 2003, 51(19): 5801-5821.  
    [12]
    Jeon I, Asahina T, Kang K J, Im S, Lu T J. Finite element simulation of the plastic collapse of closed-cell aluminum foams with X-ray computed tomography[J]. Mechanics of Materials, 2010, 42(3): 227-236. 
    [13]
    Jeon I, Katou K, Sonoda T, Asahina T, Kang K J. Cell wall mechanical properties of closedcell Al foam[J]. Mechanics of Materials, 2009, 41(1): 60-73.  
    [14]
    Teixeira S, Rodriguez M A, Pena P, De Aza A H, De Aza S, Ferraz M P, Monteiro F J. Physical characterization of hydroxyapatite porous scaffolds for tissue engineering[J]. Materials Science & Engineering C-Biomimetic and Supramolecular Systems, 2009, 29(5): 1510-1514.  
    [15]
    Ma Y, Pyrz R, RodriguezPerez M A, Escudero J, Rauhe J Ch, Su X. X-ray microtomographyic study of nanoclaypolypropylene foams[J]. Cellular Polymers, 2011, 30(3): 95-110. 
    [16]
    Wang Y H. Global uniqueness and stability for an inverse plate problem[J].Journal of Optimization Theory and Applications, 2007, 132(1): 161-173.  
    [17]
    Dai G M, Zhang W H. Size effects of basic cell in static analysis of sandwich beams[J]. International Journal of Solids and Structures, 2008, 45(9): 2512-2533.  
    [18]
    Chen J W, Liu W, Su X Y. Vibration and buckling of truss core sandwich plates on an elastic foundation subjected to biaxial inplane loads[J]. CMC Computers Materials & Continua, 2011, 24(2): 163-181. 
    [19]
    Mindlin R D. Influence of rotatory inertia and shear on flexural motions of isotropic, elastic plates[J]. Journal of Applied Mechanics, 1951, 18: 31-38.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1840) PDF downloads(1180) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return