O. D. MAKINDE. Analysis of Sakiadis flow of nanofluids with viscous dissipation and Newtonian heating[J]. Applied Mathematics and Mechanics, 2012, 33(12): 1442-1450. doi: 10.3879/j.issn.1000-0887.2012.12.006
Citation: O. D. MAKINDE. Analysis of Sakiadis flow of nanofluids with viscous dissipation and Newtonian heating[J]. Applied Mathematics and Mechanics, 2012, 33(12): 1442-1450. doi: 10.3879/j.issn.1000-0887.2012.12.006

Analysis of Sakiadis flow of nanofluids with viscous dissipation and Newtonian heating

doi: 10.3879/j.issn.1000-0887.2012.12.006
  • Received Date: 2011-12-19
  • Rev Recd Date: 2012-04-29
  • Publish Date: 2012-12-15
  • The combined effects of viscous dissipation and Newtonian heating on bound-ary layer flow over a moving flat plate are investigated for two types of water-based New-tonian nanofluids containing metallic or nonmetallic nanoparticles such as copper (Cu) and titania (TiO2). The governing partial differential equations are transformed into ordinary differential equations through a similarity transformation and are solved numer-ically by a Runge-Kutta-Fehlberg method with a shooting technique. The conclusions are that the heat transfer rate at the moving plate surface increases with the increases in the nanoparticle volume fraction and the Newtonian heating, while it decreases with the increase in the Brinkmann number. Moreover, the heat transfer rate at the moving plate surface with Cu-water as the working nanofluid is higher than that with TiO2-water.
  • loading
  • [1]
    Matteucci M E, Hotze M A, Johnston K P, Williams III R O. Drug nanoparticles by antisolvent precipitation: mixing energy versus surfactant stabilization[J].Langmuir, 2006, 22(21):8951-8959. 
    [2]
    Choi S U S. Enhancing thermal conductivity of fluids with nanoparticles[C]//Proceedings of ASME International Mechanical Engineering Congress and Exposition, San Francisco, 1995:99-105. 
    [3]
    Wen D, Ding Y. Experimental investigation into the pool boiling heat transfer of aqueous based c-alumina nanofluids[J]. Journal of Nanoparticle Research, 2005, 7(2):265-274. 
    [4]
    Oztop H F, Abu-Nada E. Numerical study of natural convection in partially heated rectangular enclosures filled with nanofluids[J]. International Journal of Heat and Fluid Flow, 2008, 29(5):1326-1336. 
    [5]
    Abu-Nada E. Application of nanofluids for heat transfer enhancement of separated flows encountered in a backward facing step[J]. International Journal of Heat and Fluid Flow, 2008, 29(1):242-249. 
    [6]
    Das S K, Choi S U S, Yu W, Pradet T. Nanofluids: Science and Technology[M]. New Jersey: Wiley, 2007. 
    [7]
    Keblinski P, Prasher R, Eapen J. Thermal conductance of nanofluid is the controversy over[J]. Journal of Nanoparticle Research, 2008, 10(7):1089-1097. 
    [8]
    Nield D A, Kuznetsov A V. The ChengMinkowycz problem for natural convective boundary layer flow in a porous medium saturated by a nanofluid[J]. International Journal of Heat and Mass Transfer, 2009, 52(25/26):5792-5795. 
    [9]
    Kuznetsov A V, Nield D A. Natural convective boundary-layer flow of a nanofluid past a vertical plate[J]. International Journal of Thermal Sciences, 2010, 49(2): 243-247. 
    [10]
    Lin J Z, Chan T L, Liu S, Zhou K, Zhou Y, Lee S C. Effects of coherent structures on nanoparticle coagulation and dispersion in a round jet[J].International Journal of Nonlinear Science and Numerical Simulation, 2007, 8(1): 45-54. 
    [11]
    Lin J Z, Lin P, Chen H. Research on the transport and deposition of nanoparticles in a rotating curved pipe[J]. Physics of Fluids, 2009, 21(12):122001. 
    [12]
    Yu M Z, Lin J Z, Chan T L. Effect of precursor loading on nonspherical TiO-2 nanoparticle synthesis in a diffusion flame reactor[J]. Chemical Engineering Science, 2008, 63(9): 2317-2329. 
    [13]
    Buongiorno J. Convective transport in nanofluids[J]. ASME Journal of Heat Transfer, 2006, 128(3): 240-250. 
    [14]
    Sakiadis B C. Boundary-layer behaviour on continuous solid surfaces—Ⅰ: boundary layer equations for 2-dimensional and axisymmetric flow[J]. American Institute of Chemical Engineers Journal, 1961, 7(1):26-28. 
    [15]
    Takhar H S, Nitu S, Pop I. Boundary layer folw due to a moving plate: variable fluid properties[J]. Acta Mechanica, 1991, 90(1): 37-42. 
    [16]
    Tsou F K, Sparrow E M, Goldstein R J. Flow and heat transfer in the boundary layer on a continuous moving surface[J]. International Journal of Heat and Mass Transfer, 1967, 10(2): 219-235. 
    [17]
    Makinde O D. Free convection flow with thermal radiation and mass transfer past a moving vertical porous plate[J]. International Communications in Heat and Mass Transfer, 2005, 32(10): 1411-1419. 
    [18]
    Fang T. Boundary layer flow over a shrinking sheet with powerlaw velocity[J]. International Journal of Heat and Mass Transfer, 2008, 51(25/26): 5838-5843. 
    [19]
    Makinde O D, Aziz A. Boundary layer flow of a nanofluid past a stretching sheet with a convective boundary condition[J]. International Journal of Therma Sciences, 2011, 50(7): 1326-1332.  
    [20]
    Ahmad S, Rohni A M, Pop I. Blasius and Sakiadis problems in nanofluids[J]. Acta Mechanica, 2011, 218(3/4): 195-204. 
    [21]
    Aziz A. A similarity solution for laminar thermal boundary layer over a flat plate with a convective surface boundary condition[J]. Communications in Nonlinear Science and Numerical Simulation, 2009, 14(4):1064-1068. 
    [22]
    Bataller R C. Radiation effects for the Blasius and Sakiadis flows with a convective surface boundary condition[J]. Applied Mathematics and Computation, 2008, 206(2): 832-840. 
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1944) PDF downloads(1251) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return