XU Ding, CHEN Gang, WANG Xian, LI Yue-ming. Direct Numerical Simulation of the Wall-Bounded Turbulent Flow by Lattice Boltzmann Method Based on Multi-GPU[J]. Applied Mathematics and Mechanics, 2013, 34(9): 956-964. doi: 10.3879/j.issn.1000-0887.2013.09.009
Citation: XU Ding, CHEN Gang, WANG Xian, LI Yue-ming. Direct Numerical Simulation of the Wall-Bounded Turbulent Flow by Lattice Boltzmann Method Based on Multi-GPU[J]. Applied Mathematics and Mechanics, 2013, 34(9): 956-964. doi: 10.3879/j.issn.1000-0887.2013.09.009

Direct Numerical Simulation of the Wall-Bounded Turbulent Flow by Lattice Boltzmann Method Based on Multi-GPU

doi: 10.3879/j.issn.1000-0887.2013.09.009
Funds:  The National Natural Science Foundation of China(11242010;11102150)
  • Received Date: 2013-05-30
  • Rev Recd Date: 2013-06-05
  • Publish Date: 2013-09-15
  • The wallbounded turbulent flow was simulated directly (DNS) by lattice Boltzmann method (LBM) through multi-GPU parallel computing. The Data-parallel SIMT (single-instruction multiple-thread) characteristic of GPU matched the parallelism of LBM well, which led to high efficiency of GPU on the LBM solver. At the same time, it bronght possibility for large-scale DNS on the desk-top supercomputer. In this DNS work, 8 GPUs were adopted. The number of meshes is 6.7×107, which resulted in a non-dimensional mesh size of Δ+=1.41 for the whole solution domain. It took only 24 hours for the GPU-LBM solver to simulate 3×106 LBM steps. As a result, both the mean velocity and turbulent variables, such as Reynolds stress and velocity fluctuations, agree well with the results of Moser, et al. The capacity and validity of LBM in simulating turbulent flow are verified.
  • loading
  • [1]
    Chen S Y, Doolen G D. Lattice Boltzmann method for fluid flows[J]. Annual Review of Fluid Mechanics,1998,30: 329-364.
    [2]
    何雅玲, 王勇, 李庆. 格子Boltzmann方法的理论及应用[M]. 北京:科学出版社, 2009. (HE Ya-ling, WANG Yong, LI Qing.Lattice Boltzmann Method: Theory and Applications[M]. Beijing: Science Press, 2009. (in Chinese))
    [3]
    Yu H, Girimaji S S, Luo L S. DNS and LES of decaying isotropic turbulence with and without frame rotation using lattice Boltzmann method[J]. Journal of Computational Physics,2005,209(2): 599-616.
    [4]
    Yu H, Luo L S, Girimaji S S. LES of turbulent square jet flow using an MRT lattice Boltzmann model[J].Computers &Fluids,2006,35(8/9): 957-965.
    [5]
    Moser R D, Kim J, Mansour N N. Direct numerical simulation of turbulent channel flow up to Reτ=590[J]. Phys Fluids,1999,11(4): 943-945.
    [6]
    Kim J, Moin P, Moser R D. Turbulence statistics in fully developed channel flow at low Reynolds number[J]. J Fluid Mech, 1987, 177: 133-166.
    [7]
    Nvidia. NVIDIA CUDA Programming Guide[K]. Version 2.0. 2008.
    [8]
    Ogawa S, Aoki T. GPU computing for 2dimensional incompressible-flow simulation based on multi-grid method[C]//Transactions of JSCES. Paper No20090021. 2009.
    [9]
    Harada T. Smoothed particle hydrodynamics on GPUs[C]//Proceeding of the Spring Conference on Computer Graphics, 2007: 235-241.
    [10]
    Rossinelli D, Bergdorf M, Cottet GH, Koumoutsakosa P. GPU accelerated simulations of bluff body flows using vortex particle methods[J]. Journal of Computational Physics, 2010, 229(9): 3316-3333.
    [11]
    Wang X, Aoki T. MultiGPU performance of incompressible flow computation by lattice Boltzmann method on GPU cluster[J]. Parallel Computing, 2011, 37(9): 521-535.
    [12]
    Shimokawabe T, Aoki T, Takaki T, Endo T, Yamanaka A, Maruyama N, Nukada A, Matsuoka S. Petascale phase-field simulation for dendritic solidification on the TSUBAME 2.0 supercomputer[C]//Proceedings of 2011 International Conference for High Performance Computing, Networking, Storage and Analysis. New York, USA, 2011.
    [13]
    Shimokawabe T, Aoki T, Ishida J, Kawano K, Muroi C. 145 TFlops performance on 3990 GPUs of TSUBAME 2.0 supercomputer for an operational weather prediction[C]// Proceedings of the International Conference on Computational Science, ICCS 〖STBX〗2011, 2011, 4: 1535-1544.
    [14]
    Wang X, Aoki T. High performance computation by multi-node GPU cluster-TSUBAME 2.0 on the air flow in an urban city using lattice Boltzmann method[J]. International Journal of Aerospace and Lightweight Structures, 2012, 2(1): 77-86.
    [15]
    Miki T, Wang X, Aoki T, Imai Y, Ishikawa T, Takase K, Yamaguchi T. Patientspecific modeling of pulmonary air flow using GPU cluster for the application in medical practice[J]. Computer Methods in Biomechanics and Biomedical Engineering, 2012, 15(7): 771-778.
    [16]
    Lammers P, Beronov K N, Volkert R, Brenner G, Durst F.Lattice BGK direct numerical simulation of fully developed turbulence in incompressible plane channel flow[J]. Computers & Fluids, 2006, 35(10): 1137-1153.
    [17]
    Jimenez J, Moin P. The minimal flow unit in near-wall turbulence[J]. Journal of Fluid Mechanics, 1991, 225(1): 213-240.
    [18]
    Spasov M, Rempfer D, Mokhasi P. Simulation of turbulent channel flow with an entropic lattice Boltzmann method[J]. Int J Numer Meth Fluids, 2009, 60(11): 1240-1258.
    [19]
    Pope S B. Turbulent Flows[M]. Cambridge: Cambridge University Press, 2000.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1570) PDF downloads(1389) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return