XU Yu, LIAO Cai-cai, RONG Xiao-min, WANG Qiang. Independent Research and Development (R & D) Progress in Large-Scale Wind Turbine Blades With Coordinated Aerodynamics, Structure and Loads[J]. Applied Mathematics and Mechanics, 2013, 34(10): 1028-1039. doi: 10.3879/j.issn.1000-0887.2013.10.003
Citation: XU Yu, LIAO Cai-cai, RONG Xiao-min, WANG Qiang. Independent Research and Development (R & D) Progress in Large-Scale Wind Turbine Blades With Coordinated Aerodynamics, Structure and Loads[J]. Applied Mathematics and Mechanics, 2013, 34(10): 1028-1039. doi: 10.3879/j.issn.1000-0887.2013.10.003

Independent Research and Development (R & D) Progress in Large-Scale Wind Turbine Blades With Coordinated Aerodynamics, Structure and Loads

doi: 10.3879/j.issn.1000-0887.2013.10.003
Funds:  The National Natural Science Foundation of China(50876105)
  • Received Date: 2013-04-15
  • Rev Recd Date: 2013-09-15
  • Publish Date: 2013-10-15
  • According to the three key elements in the blade design process, which were aero-design, structural design and loads prediction, independent R & D progress was summarized and analyzed. In aero-design, the computational fluid aerodynamic (CFD) method, vortex method and the blade element momentum method (BEM) were described. Then based on the BEM method, which was widely used in the engineering design, solutions for designing blades applied in low-speed wind area were pointed out. In structural design, a brief overview of the traditional design and analysis methods based on beam model was given. Then, the defects of these methods when used in thin-shell structures of large-scale composite blade were analyzed. At last, the application progress in the finite element method (FEM) used in the blade structure analysis was also described. In loads prediction, the effects of the loads prediction on blades and the entire wind turbine were introduced. The progress in load forecasting was also described. Then, a through analyzing the relationship between these three key elements, a conclusion, that developing a blade optimization design system with coordinated aerodynamics, structure and loads could truly meet the requirements of high efficiency and low cost, was got. At last, the main directions need further study are pointed out. Those are, high efficiency and low uploaded airfoils, structural nonlinear finite element analysis, aero-structure coupling research and enacting design standard etc. The aim is establishing a blade R & D system suitable for the conditions of wind resources in China, and promoting the development of wind power in the country.
  • loading
  • [1]
    白井艳, 杨科, 李宏利, 徐建中. 水平轴风力机专用翼型族设计[J]. 工程热物理学报, 2010,31(4): 589-592. (BAI Jing-yan, YANG Ke, LI Hong-li, XU Jian-zhong. Design of the horizontal axis wind turbine airfoil family[J].Journal of Engineering Thermophysics,2010,31(4): 589-592.(in Chinese))
    [2]
    Wolfe W P, Ochs S S. CFD calculations of S 809 aerodynamic characteristics[C]// American Society of Mechanical Engineers Wind Energy Symposium.Reno, United States of America, 1997.
    [3]
    Johansen J, Srensen N N. Aerofoil characteristics from 3D CFD rotor computations[J].Wind Energy,2004,7(4): 283-294.
    [4]
    Hartwanger D, Horvat A. 3D modelling of a wind turbine using CFD[C]// NAFEMS Conference.United Kingdom, 2008.
    [5]
    Laursen J, Enevoldsen P, Hjort S. 3D CFD quantification of the performance of a multi-megawatt wind turbine[C]// Journal of Physics: Conference Series,Vol75, 2007.doi: 10.1088/17426596/75/1/012007.
    [6]
    王琦峰, 陈伯君, 安亦然. 大型风力机三维空气动力学数值模拟[J].空气动力学学报, 2011,29(6): 810-814. (WANG Qi-feng, CHEN Bo-jun, AN Yi-ran. 3D numerical simulation for aerodynamic performance of large scale wind turbine[J].Acta Aerodynamica Sinica,2011,29(6): 810-814. (in Chinese))
    [7]
    SezerUzol N, Long L N. 3-D time-accurate CFD simulations of wind turbine rotor flow fields[R]. American Institute of Aeronautics and Astronautics, No 2006-0394, 2006.
    [8]
    Zahle F, Srensen N N, Johansen J. Wind turbine rotor-tower interaction using an incompressible overset grid method[J].Wind Energy,2009,12(6): 594-619.
    [9]
    Van Garrel A.Development of a Wind Turbine Aerodynamics Simulation Module[M]. Netherlands: Energy Research Centre of the Netherlands, 2003.
    [10]
    Muhammad G, Shah N A, Mushtaq M. Merits and demerits of boundary element methods for incompressible fluid flow problems[J].The Journal of American Science,2009,5(6): 57-61.
    [11]
    Hess J L, Smith A M O. Calculation of nonlifting potential flow about threedimensional bodies[R]. United States of America: McDonnel Douglas Report, No E S 40622, 1966.
    [12]
    Hess J L, Smith A M O. Calculation of potential flow about arbitrary bodies[J].Progress in Aeronautical Sciences,1967,8: 1-138.
    [13]
    Newman J N. Distributions of sources and normal dipoles over a quadrilateral panel[J].Journal of Engineering Mathematics,1986,20(2): 113-126.
    [14]
    王强, 徐宇, 王胜军, 徐建中. 基于三维面元法的风力机三维流场计算[C]//中国工程热物理学会学术会议. 哈尔滨, 2012. (WANG Qiang, XU Yu, WANG Sheng-jun, XU Jian-zhong. 3D flow fluid computation of HAWT based on 3D panel method[C]// Chinese Society of Engineering Thermophysics Conference.Harbin, 2012.(in Chinese))
    [15]
    WANG Qiang, WANG Zhong-xia, SONG Juan-juan, XU Yu, XU Jian-zhong. Study on a new aerodynamic model of HAWT based on panel method and reduced order model using proper orthogonal decomposition[J].Renewable Energy,2012,48: 436-447.
    [16]
    汉森.风力机空气动力学[M].第2版. 肖劲松 译. 北京:中国电力出版社, 2009.(Hansen Martin O L.Aerodynamics of Wind Turbine[M]. 2nd ed. XIAO Jing-song trans. Beijing: China Electric Power Press, 2009.(in Chinese))
    [17]
    Du Z, Selig M. The effect of rotation on the boundary layer of a wind turbine blade[J].Renewable Energy,2000, 20(2): 167-181.
    [18]
    Du Z, Selig M S. A 3-D stall-delay model for horizontal axis wind turbine performance prediction[R]//American Institute of Aeronautics and Astronautics98-0021, 1998: 9-19.
    [19]
    王建礼, 徐建中. 一种改进的诱导因子计算方法[J]. 工程热物理学报, 2009,30(9): 14891491.(WANG Jian-li, XU Jian-zhong. An improved calculation method of induction factors[J].Journal of Engineering Thermophysics,2009,30(9): 1489-1491.(in Chinese))
    [20]
    Burton T, Sharpe D, Jenkins N, Bossanyi E. 风能技术[M]. 武鑫, 谷海涛, 李海东, 邵桂萍, 林资旭, 王宇龙, 胡春松, 潘磊, 李建林, 鄂春良, 李亚西 译. 北京:科学出版社, 2007: 41-62. (Burton T, Sharpe D, Jenkins N, Bossanyi E.Wind Energy [M]. WU Xin, GU Hai-tao, LI Hai-dong, SHAO Guo-ping, LIN Zi-xu, WANG Yu-long, HU Chun-song, PAN Lei, LI Jian-lin, E Chun-liang, LI Ya-xi trans. Beijing: Science Press, 2007: 41-62. (Chinese version))
    [21]
    廖猜猜, 石可重, 赵晓路. 设计参数对叶片气动性能的影响研究[C]//中国工程热物理学会学术会议. 哈尔滨, 2012. (LIAO Cai-cai, SHI Ke-zhong, ZHAO Xiao-lu. Design parameters on the blade aerodynamic performance[C]// Chinese Society of Engineering Thermophysics Conference.Harbin, 2012. (in Chinese))
    [22]
    Thomsen O T. Sandwich materials for wind turbine blades[C]// 27th International Conference on Materials Science.Denmark, 2006.
    [23]
    McKittrick L R, Cairns D S.Analysis of a Composite Blade Design for the AOC 15/50 Wind Turbine Using a Finite Element Model [M]. Sandia National Laboratories, 2001.
    [24]
    Bechly M E, Clausent P D. Structural design of a composite wind turbine blade using finite element analysis[J].Computer & Structures,1997,63(3): 639-646.
    [25]
    Jureczko M, Pawlak M. Optimization of wind turbine blades[J].Journal of Materials Processing Technology,2005,167(2/3): 463-471.
    [26]
    Berggreen C, Branner K. Application and analysis of sandwich elements in the primary structure of large wind turbine blades[J].Journal of Sandwich Sturctures and Materials,2007,9(6): 5525-552.
    [27]
    Overgaard L C T, Lund E, Thomsen O T. Structural collapse of a wind turbine blade—part A: static test and equivalent single layered models[J].Composites: Part A,2010 ,41(2): 257-270.
    [28]
    Ahlstrom A. Influence of wind turbine flexibility on loads and power production[J].Wind Energy,2006,9(3): 237-249.
    [29]
    王建礼, 石可重, 廖猜猜, 徐建中. 风力机叶片耦合振动力学模拟及实验研究[J]. 工程热物理学报, 2013,34(1): 67-70. (WANG Jian-li, SHI Ke-zhong, LIAO Cai-cai, XU Jian-zhong. Study on coupled vibration simulation and experiment of wind turbine blade[J].Journal of Engineering Thermophysics,2013,34(1): 67-70.(in Chinese))
    [30]
    Davidson P A.Turbulence: An Introduction for Scientists and Engineers [M]. USA: Oxford University Press, 2004.
    [31]
    Wilcox D C.Turbulence Modeling for CFD [M]. La Canada, California: DCW Industries, 1998.
    [32]
    Réthoré PE. Wind turbine wake in atmospheric turbulence[D]. PhD Thesis. Denmark: Aalborg University, 2009.
    [33]
    von Collani E, Binder A, Sans W, Heitmann A, AlGhazali K. Design load definition by LEXPOL[J].Wind Energy,2008,11(6): 637-653.
    [34]
    Ragan P, Manuel L. Statistical extrapolation methods for estimating wind turbine extreme loads[J].Journal of Solar Energy Engineering,2008,130(3): 1-15.
    [35]
    Jensen J J, Olsen A S, Mansour A E. Extreme wave and wind response predictions[J]. Ocean Engineering,2011,38(17/18): 2244-2253.
    [36]
    陈严, 王楠. 水平轴风力机极限载荷预测方法的研究[J]. 汕头大学学报(自然科学版), 2005,20(1): 43-47.(CHEN Yan, WANG Nan. Limit load forecasting method of horizontal axis wind turbine[J].Journal of Shantou University(Natural Sciences),2005,20(1): 43-47.(in Chinese))
    [37]
    Fuglsang P, Madsen H A. Optimization method for wind turbine rotors[J].Journal of Wind Engineering and Industrial Aerodynamics,1999,80(1/2): 191-206.
    [38]
    Kong C, Kim T, Han D J, Sugiyama Y. Investigation of fatigue life for a medium scale composite wind turbine blade[J].International Journal of Fatigue,2006,28(10): 1382-1388.
    [39]
    Moriarty P J, Holley W E, Butterfield S. Effect of turbulence variation on extreme load prediction for wind turbines[J].Journal of Solar Energy Engineering,2002,124(4): 387-395.
    [40]
    Thomsen K, Sorensen P. Fatigue loads for wind turbines operating in wakes[J].Journal of Wind Engineering and Industrial Aerodynamics,1999,80(1): 121-136.
    [41]
    廖猜猜. 极限载荷条件下的风力机叶片铺层优化设计研究[D]. 博士学位论文. 北京:中国科学院工程热物理研究所, 2012.(LIAO Cai-cai. Study on wind turbine blade layers optimization design under extreme loads[D]. PhD Thesis. Beijing: Institute of Engineering Thermophysics, Chinese Academy of Sciences, 2012. (in Chinese))
    [42]
    YE Zhi-quan, CHENG Zhao-xue, CHEN Jing-yi, BAI Shi-bao. Aerodynamic optimum design procedure and program for the rotor of a horizontalaxis wind turbine[J].Journal of Wind Engineering and Industrial Aerodynamics,1992,39(1/3): 179-186.
    [43]
    Selig M S, CoverstoneCarroll V L. Application of a genetic algorithm to wind turbine design[J]. Journal of Energy Resource Technology,1996, 118(1): 22-28.
    [44]
    Benini E, Toffolo A. Optimal design of horizontalaxis wind turbines using blade-element theory and evolutionary computation[J].Journal of Solar Energy Engineering,2002,124(4): 357-363.
    [45]
    Jureczko M, Pawlak M, Mezyk A. Optimization of wind turbine blades[J].Journal of Materials Processing Technology,2005, 167(2/3): 463-447.
    [46]
    Grujicic M, Arakere G, Pandurangan B, Sellappan V, Vallejo A, Ozen M. Multidisciplinary design optimization for glass-fiber epoxy-matrix composite 5 MW horizontal-axis wind-turbine blades[J].Journal of Materials Engineering and Performance,2010,19(8): 1116-1127.
    [47]
    LIAO Caicai, ZHAO Xiao-lu, XU Jian-zhong. Blade layers optimization of wind turbines using FAST and improved PSO algorithm[J].Renewable Energy,2012,42: 227-233.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1179) PDF downloads(1345) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return