LI De-shun, LI Ren-nian, WANG Xiu-yong, WEI Lie-jiang, LI Yin-ran, QIANG Yan, LIU Zhi-qiang. Investigation of Three-Dimensional Effect on Blades of a Wind Turbine Based on Field Experiments[J]. Applied Mathematics and Mechanics, 2013, 34(10): 1073-1082. doi: 10.3879/j.issn.1000-0887.2013.10.007
Citation: LI De-shun, LI Ren-nian, WANG Xiu-yong, WEI Lie-jiang, LI Yin-ran, QIANG Yan, LIU Zhi-qiang. Investigation of Three-Dimensional Effect on Blades of a Wind Turbine Based on Field Experiments[J]. Applied Mathematics and Mechanics, 2013, 34(10): 1073-1082. doi: 10.3879/j.issn.1000-0887.2013.10.007

Investigation of Three-Dimensional Effect on Blades of a Wind Turbine Based on Field Experiments

doi: 10.3879/j.issn.1000-0887.2013.10.007
Funds:  The National Basic Research Program of China (973 Program)(2014CB046201);The National Natural Science Foundation of China(51166009)
  • Received Date: 2013-08-29
  • Rev Recd Date: 2013-09-16
  • Publish Date: 2013-10-15
  • Field experiments were performed on a 33 kW horizontal axis wind turbine. The curves of pressure distribution were gathered by 191 pressure sensors disposed span-ward on 7 particular sections of a blade. Then, the 3D numerical simulation of the wind turbine and 2D numerical simulation of the 7 airfoils were performed in comparison with the field experiment results, and the lift and drag coefficients of the 7 airfoils were also obtained for 3D and 2D. The investigation was performed for the turbine aerodynamic characteristics under the 3D effects. At last, conclusions were drawn. The pressure difference of the airfoils first increases and then decreases from the blade tip to the blade root, and the curves of the pressure distribution show the characteristics of flow separation on the blade obviously. The 3D results of pressure on the 7 airfoils are more consistent with the experiments than 2D. There is a more violent 3D flow on the blade surface, especially at the blade tip and the blade root.
  • loading
  • [1]
    Simms D, Schreck S, Hand M, Fingersh L J. NREL unsteady aerodynamics experiment in the NASAAmes wind tunnel: a comparison of predictions to measurements[R]. Colorado: National Renewable Energy Laboratory, 2001.
    [2]
    Schepers J G, Brand A J, Bruining A, Graham J M R, Hand M M, Infield D G, Madsen H A, Paynter R J H, Simms D A. Final report of IEA annex XIV: field rotor aerodynamics[R]. ECNC-97027, 1997.
    [3]
    Schepers J G, Brand A J, Bruining A, Graham J M R, Hand M M, Infield D G, Madsen H A, Maeda T, Paynter J H, Van Rooij R, Shimizu Y, Simms D A, Stefanatos N. Final report of IEA annex XVIII: enhanced field rotor aerodynamics database[R]. ECNC-02016, 2002.
    [4]
    Barthelmie R J, Larsen G C, Frandsen S T, Folkerts L, Rados K, Pryor S C, Lange B, Schepers G. Comparison of wake model simulations with offshore wind turbine wake profiles measured by sodar[J]. Journal of Atmospheric and Oceanic Technology, 2006,23(7): 888-901.
    [5]
    Helge A M, Christian B, Uwe S P, Mac G, Peter F, Jonas R, Niels A O, Peder E, Jesper L, Leo J. The DANAERO MW experiments final report[R]. DTU, Ris-R1726(EN), 2010.
    [6]
    Spentzos A, Barakos G, Badcock K, Richards B, Wernert P, Schreck S, Raffel M. CFD investigation of 2D and 3D dynamic stall[C]// The AHS 4th Decennial Specialist’s Conference on Aeromechanics,2004(1):21-23.
    [7]
    Ekaternaris J A, Platzer M F. Computational prediction of airfoil dynamic stall aerospace science[J]. Progress in Aerospace Sciences,1998,33(11): 759-846.
    [8]
    Narramoroe J C, Vermeland R. NavierStokes calculations of inboard stall delay due to rotation[J]. Journal of Aircraft,1992,29(1): 73-78.
    [9]
    Wood D H. A threedimensional analysis of stall-delay on a horizontal axis wind turbine[J]. Journal of Wind Engineering and Industrial Aerodynamics,1991,37(1): 1-14.
    [10]
    Duque E P N, van Dam C P, Hughes S C. NavierStokes simulations of the NREL combined experiment phase II rotor[C]// 37th Aerospace Sciences Meeting and Exhibit,1999.
    [11]
    Srinivasan G R, Baeder J D, Obayashi S, McCroskey W J. Flowfield of a lifting rotor in hover: a Navier-Stokes simulation[J]. American Institute of Aeronautics and Astronautics,1992, 30(10): 2371-2378.
    [12]
    伍艳, 王同光. 风力机叶片的三维非定常气动特性估算[J]. 计算力学学报, 2008,25(1):100103. (WU Yan, WANG Tong-guang. Prediction of the unsteady aerodynamic characteristics of wind turbine blades with 3-D rotational effects[J]. Chinese Journal of Computational Mechanics,2008,25(1):100-103. (in Chinese))
    [13]
    伍艳, 王同光. 三维旋转效应对桨叶气动特性影响的计算[J].空气动力学学报, 2006,24(2): 200-203. (WU Yan, WANG Tong-guang. Prediction of three dimensional rotational effect on blade aerodynamic characteristics[J]. Acta Aerodynamica Sinica,2006,24(2): 200-203. (in Chinese))
    [14]
    伍艳, 王同光. 三维旋转效应对叶片非定常气动特性的影响[J]. 南京航空航天大学学报, 2005,37(2): 178183. (WU Yan, WANG Tong-guang. Calculation of three-dimensional rotational effect on blade aerodynamic characteristics[J]. Journal of Nanjing University of Aeronautics & Astronautics,2005,37(2): 178-183. (in Chinese))
    [15]
    Gonzalez A, Munduate X. Threedimensional and rotational aerodynamics on the NREL phase VI wind turbine blade[J]. Journal of Solar Energy Engineering,2008,130(3): 031008.
    [16]
    JangOh Mo, YoungHo Lee. CFD Investigation on the aerodynamic characteristics of a smallsized wind turbine of NREL Phase VI operating with a stallregulated method[J]. Journal of Mechanical Science and Technology,2012,26(1): 81-92.
    [17]
    WANG Jian-wen, JIA Rui-bo, WU Ke-qi. Numerical simulation on effects of pressure distribution of wind turbine blade with a tip vane[J]. Journal of Thermal Science,2007,16(3): 203-207.
    [18]
    伍艳, 谢华, 王同光. 风力机风轮的非定常气动特性计算方法的改进[J]. 工程力学, 2008,25(10): 54-59. (WU Yan, XIE Hua, WANG Tong-guang. Modification of calculating unsteady aerodynamic characteristics of wind turbine blades[J]. Engineering Mechanics,2008,25(10): 54-59. (in Chinese))
    [19]
    李仁年, 袁尚科, 魏列江, 李德顺, 李银然. 风力机叶片表面压力的计算与外场测试分析[J]. 实验流体力学, 2012,26(5): 52-56. (LI Ren-nian, YUAN Shang-ke, WEI Lie-jiang, LI De-shun, LI Yin-ran. Measurement and calculation of blade surface pressure for a wind turbine in field[J]. Journal of Experiments in Fluid Mechanics,2012,26(5): 52-56. (in Chinese))
    [20]
    LI De-shun, LI Ren-nian. Field experiment of blade surface pressure of a HAWT[J]. Applied Mechanics and Materials,2013,291/294: 445-449.
    [21]
    李银然, 李仁年, 王秀勇, 李德顺. 计算模型维数对风力机翼型气动性能预测的影响[J]. 农业机械学报, 2011,42(2): 115-119. (LI Yin-ran, LI Ren-nian, WANG Xiu-yong, LI De-shun. Effects of the calculation models with different dimension on the aerodynamic performance prediction for wind turbine airfoil[J]. Transactions of the Chinese Society for Agricultural Machinery,2011,42(2): 115-119. (in Chinese))
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1563) PDF downloads(1191) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return