QIU Jia-yong, ZHANG Jian-liang, SUN Hui, YAN Bing-ji, LI Feng-guang, GUO Hong-wei. DEM Simulation and Experimental Investigation of Burden Distribution in the Parallel-Hopper Bell-Less Top Blast Furnace[J]. Applied Mathematics and Mechanics, 2014, 35(6): 598-609. doi: 10.3879/j.issn.1000-0887.2014.06.002
Citation: QIU Jia-yong, ZHANG Jian-liang, SUN Hui, YAN Bing-ji, LI Feng-guang, GUO Hong-wei. DEM Simulation and Experimental Investigation of Burden Distribution in the Parallel-Hopper Bell-Less Top Blast Furnace[J]. Applied Mathematics and Mechanics, 2014, 35(6): 598-609. doi: 10.3879/j.issn.1000-0887.2014.06.002

DEM Simulation and Experimental Investigation of Burden Distribution in the Parallel-Hopper Bell-Less Top Blast Furnace

doi: 10.3879/j.issn.1000-0887.2014.06.002
Funds:  The National Basic Research Program of China (973 Program)(2012CB720401)
  • Received Date: 2013-11-11
  • Rev Recd Date: 2013-12-23
  • Publish Date: 2014-06-11
  • The flow behavior of particles during the burden distribution process in the parallel-hopper bell-less top blast furnace was investigated with the discrete element method (DEM) as well as a model experiment. It is shown that the DEM simulation results agree with the experimental results well. The contact force distribution in the hopper is nonuniform, i.e., the strong force chains mainly locate in the lower part of the parallel-hopper and in the vicinity of the inclined wall. The flow pattern in the parallel-hopper resembles a deflective funnel flow which comprises the quasi-stagnant zone, the central accelerated flow zone and the wall shear layer. Both the particle falling trajectory and distribution are related to the discharging sequence which is affected by the flow pattern in the hopper. As the flow trajectory is influenced by the opening of the flowgate, it should be controlled within a reasonable range for the stability of burden distribution. The heap peak position varies with the falling point during the heaping process, and the peak radius is larger than that of the falling point.
  • loading
  • [1]
    刘云彩. 高炉布料规律[M]. 第3版. 北京: 冶金工业出版社, 2005: 1-14.(LIU Yun-cai. Law of Burden Distribution of Blast Furnace[M]. 3rd ed. Beijing: Metallurgical Industry Press, 2005: 1-14.(in Chinese))
    [2]
    钱人毅. 高炉无钟炉顶布料规律的研究[J]. 钢铁, 1987,22(8): 46-48.(QIAN Ren-yi. Study on the burden distribution in bell-less blast furnace[J]. Iron and Steel,1987,22(8): 46-48.(in Chinese))
    [3]
    胡洵璞. 高炉炼铁设计原理[M]. 北京: 化学工业出版社, 2010: 175-216.(HU Xun-pu. Design Principle of Blast Furnace Ironmaking[M]. Beijing: Chemical Industry Press, 2010: 175-216.(in Chinese))
    [4]
    杜鹤桂, 余艾冰. 高炉无钟炉顶布料的模拟试验研究[J]. 钢铁, 1986,21(11): 1-9.(DU He-gui, YU Ai-bing. Simulating study on burden distribution in bell-less top blast furnace[J]. Iron and Steel,1986,21(11): 1-9.(in Chinese))
    [5]
    Liang D, Yu Y W, Bai C G, Qiu G B, Zhang S F. Effect of burden material size on blast furnace stockline profile of bell-less blast furnace[J]. Ironmaking and Steelmaking, 2009,36(3): 217-221.
    [6]
    Yu Y W, Bai C G, Zhang Z R, Wang F, Lü D G, Pan C. Theoretical calculation and validation of burden trajectory in bell-less top blast furnace[J]. Ironmaking and Steelmaking, 2009,36(7): 505-508.
    [7]
    余艾冰, 杜鹤桂. 高炉无钟炉顶中炉料运动的理论解析[J]. 东北工学院学报, 1986,7(4): 71-78.(YU Ai-bing, DU He-gui. Theoretical analysis of burden movement in the bell-free top of a blast furnace[J]. Journal of Northeast Institute of Technology,1986,7(4): 71-78.(in Chinese))
    [8]
    Jiménez J, Fernndez B, Sainz de Ayala J, Mochón J, Formoso A, Bueno F. New mathematical model for blast furnace burden distribution[J]. Revista de Metalurgia, 1998,34(extra): 158-163.
    [9]
    王平. 无料钟料流运动轨迹数学模拟[J]. 钢铁研究学报, 2006,18(5): 5-9.(WANG Ping. Mathematical imitation of trajectory of burden flow for bellless top BF[J]. Journal of Iron and Steel Research,2006,18(5): 5-9.(in Chinese))
    [10]
    Nag S, Koranne V M. Developmemt of material trajectory simulation model for blast furnace compact bell-less top[J]. Ironmaking and Steelmaking, 2009,36(5): 371-378.
    [11]
    邱家用, 高征铠, 张建良, 国宏伟, 王春龙, 孔德文. 无料钟炉顶高炉中炉料流动轨迹的模拟[J]. 过程工程学报, 2011,11(3): 368-375.(QIU Jia-yong, GAO Zheng-kai, ZHANG Jian-liang, GUO Hong-wei, WANG Chun-long, KONG De-wen. Simulation of burden trajectory in a bell-less top blast furnace[J]. The Chinese Journal of Process Engineering, 2011,11(3): 368-375.(in Chinese))
    [12]
    徐泳, 孙其诚, 张凌, 黄文彬. 颗粒离散元法研究进展[J]. 力学进展, 2003,33(2): 251-260.(XU Yong, SUN Qi-cheng, ZHANG Ling, HUANG Wen-bin. Advances in discrete element methods for particulate materials[J]. Advances in Mechanics,2003,33(2): 251-260.(in Chinese))
    [13]
    孙其诚, 王光谦. 颗粒物质力学导论[M]. 北京: 科学出版社, 2009: 11-13. (SUN Qi-cheg, WANG Guang-qian. Introduction of Mechanics for Particulate Materials[M]. Beijing: Science Press, 2009: 11-13.(in Chinese))
    [14]
    〖JP3〗Cundall P A, Strack O D L. A discrete numerical model for granular assemblies[J]. Géotechnique, 〖JP〗1979,29(1): 47-65.
    [15]
    Kaneko Y, Shiojima T, Horio M. DEM simulation of fluidized beds for gas-phase olefin polymerization[J]. Chemical Engineering Science, 1999,54(24): 5809-5821.
    [16]
    Dong K J, Yu A B, Brake I. DEM simulation of particle flow on a multi-deck banana screen[J]. Minerals Engineering, 2009,22(11): 910-920.
    [17]
    Zhu H P, Yu A B, Wu Y H. Numerical investigation of steady and unsteady state hopper flows[J]. Powder Technology, 2006,170(3): 125-134.
    [18]
    Ketterhagen W R, Curtis J S, Wassgren C R, Bruno C H. Modeling granular segregation in flow from quasi-three-dimensional wedge-shaped hoppers[J]. Powder Technology, 2008,179(3):126-143.
    [19]
    Ketterhagen W R, Curtis J S, Wassgren C R, Bruno C H. Predicting the flow mode from hoppers using the discrete element method[J]. Powder Technology, 2009,195(1): 1-10.
    [20]
    Nouchi T, Sato T, Sato M, Takeda K, Ariyama T. Stress field and solid flow analysis of coke packed bed in blast furnace based on DEM[J]. ISIJ International, 2005,45(10): 1426-1431.
    [21]
    YU Yao-wei, Saxén H. Experimental and DEM study of segregation of ternary size particles in a blast furnace top bunker model[J]. Chemical Engineering Science, 2010,65(18): 5237-5250.
    [22]
    Zhou Z Y, Zhu H P, Wright B, Yu A B, Zulli P. Gas-solid flow in an ironmaking blast furnace—Ⅱ: discrete particle simulation[J]. Powder Technology, 2011,208(1): 72-85.
    [23]
    张建良, 范正赟, 陈永星, 杨广庆, 杨天钧, 有山达郎. 下部调剂对高炉炉料运动影响的离散模拟[J]. 钢铁钒钛, 2011,32(1): 11-16.(ZHANG Jian-liang, FAN Zheng-yun, CHEN Yong-xing, YANG Guang-qing, YANG Tian-jun, Ariyama T. Influence of control of the lower zone on burden motion in blast furnace by DEM[J]. Iron Steel Vanadium Titanium, 2011,32(1): 11-16.(in Chinese))
    [24]
    Kawai H, Takahashi H. Solid behavior in shaft and deadman in a cold model of blast furnace with floating-sinking motion of hearth packed bed studied by experimental and numerical DEM analyses[J]. ISIJ International, 2004,44(7): 1140-1149.
    [25]
    Mio H, Komatsuki S, Akashi M, Shimosaka A, Shirakawa Y, Hidaka J, Kadowaki M, Matsuzaki S, Kunitomo K. Effect of chute angle on charging behavior of sintered ore particles at bell-less type charging system of blast furnace by discrete element method[J]. ISIJ International, 2009,49(4):479-486.
    [26]
    Mio H, Komatsuki S, Akashi M, Shimosaka A, Shirakawa Y, Hidaka J, Kadowaki M, Yokoyama H, Matsuzaki S, Kunitomo K. Analysis of traveling behavior of nut coke particles in bell-type charging process of blast furnace by using discrete element method[J]. ISIJ International, 2010,50(7):1000-1009.
    [27]
    Mio H, Kadowaki M, Matsuzaki S, Kunitomo K. Development of particle flow simulator in charging process of blast furnace by discrete element method[J]. Minerals Engineering, 2012,33(1): 27-33.
    [28]
    Balevicius R, Dziugys A, Kacianauskas R. Discrete element method and its application to the analysis of penetration into granular media[J]. Journal of Civil Engineering and Management, 2004,10(1): 3-14.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (725) PDF downloads(721) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return