ZHENG Ying-ren, KONG Liang, LIU Yuan-xue. Plastic Constitutive Relation and Plastic Constitutive Theory for Engineering Materials[J]. Applied Mathematics and Mechanics, 2014, 35(7): 713-722. doi: 10.3879/j.issn.1000-0887.2014.07.001
Citation: ZHENG Ying-ren, KONG Liang, LIU Yuan-xue. Plastic Constitutive Relation and Plastic Constitutive Theory for Engineering Materials[J]. Applied Mathematics and Mechanics, 2014, 35(7): 713-722. doi: 10.3879/j.issn.1000-0887.2014.07.001

Plastic Constitutive Relation and Plastic Constitutive Theory for Engineering Materials

doi: 10.3879/j.issn.1000-0887.2014.07.001
Funds:  The National Basic Research Program of China (973 Program)(2010CB732100; 2011CB710606)
  • Received Date: 2014-02-24
  • Rev Recd Date: 2014-03-31
  • Publish Date: 2014-07-15
  • Based on deep analysis of the plastic constitutive theory for engineering materials, a more rigorous and general plastic constitutive equation was proposed, which could work as the theoretical basis for constitutive modeling of engineering materials. Then the constitutive relation was applied to 3 kinds of engineering materials, i.e. geotechnical friction materials, metal crystal materials and strength control problems. According to the material properties and requirements of engineering calculation, the constitutive relation could be simplified for the geotechnical friction materials and metal materials respectively. For the strength control engineering problems, the related material could be deemed as perfectly plastic on condition of sufficient plastic deformation, and the yield condition with the limit analysis condition was used to determine the safety factor or ultimate bearing capacity through traditional or numerical limit analysis.
  • loading
  • [1]
    R·希尔. 塑性数学理论[M]. 王仁 译. 北京: 科学出版社, 1966.(Hill R. The Mathematical Theory of Plasticity[M] . WANG Ren transl. Beijing: Science Press,1966.(in Chinese))
    [2]
    郑颖人, 孔亮. 岩土塑性力学[M]. 北京: 中国建筑工业出版社, 2010.(ZHENG Ying-ren, KONG Liang. Geotechnical Plastic Mechanics[M]. Beijing: China Building Industry Press, 2010.(in Chinese))
    [3]
    王仁, 黄文彬, 黄筑平. 塑性力学引论[M]. 北京: 北京大学出版社, 2006.(WANG Ren, HUANG Wen-bin, HUANG Zhu-ping. Introduction to Plasticy[M]. Beijing: Peking University Press, 2006.(in Chinese))
    [4]
    刘元雪, 郑颖人, 陈正汉. 含主应力轴旋转的土体一般应力应变关系[J]. 应用数学和力学, 1998,19(5): 407-413.(LIU Yuan-xue, ZHENG Ying-ren, CHEN Zheng-han. The general strain stress relation of soils involving the rotation of principal stress axes[J]. Applied Mathematics and Mechanics,1998,19(5): 407-413.(in Chinese))
    [5]
    董彤, 郑颖人, 刘元雪, 阿比尔的. 考虑主应力轴旋转的土体本构关系研究进展[J]. 应用数学和力学, 2013,34(4): 327-335.(DONG Tong, ZHENG Ying-ren, LIU Yuan-xue, Abi Erdi. Research progress of the soil constitutive relation considering principal stress axes rotation[J]. Applied Mathematics and Mechanics,2013,34(4):327-335.(in Chinese))
    [6]
    Grabe P J, Clayton C R I. Effects of principal stress rotation on permanent deformation in rail track foundations[J]. Journal of Geotechnical and Geoenvironmental Engineering,2009,135(4): 555-565.
    [7]
    姜洪伟, 赵锡宏. 主应力轴旋转对软土塑性变形影响分析[J]. 上海力学, 1997,18(2): 140-146.(JIANG Hong-wei, ZHAO Xi-hong. The impact analysis of principal stress rotation on plastic deformation[J]. Shanghai Journal of Mechanics,1997,18(2): 140-146.(in Chinese))
    [8]
    Symes M T, Gens A, Hight D W. Drained principal stress rotation in saturated sand[J]. Geotechnique,1988,38(1): 59-81.
    [9]
    Lade P V. Elasto-plastic behavior of K0-consonidation clays in torsion shear tests[J]. Soils and Foundations,1989,29(2): 127-140.
    [10]
    张启辉, 赵锡宏. 主应力轴旋转对剪切带形成的影响分析[J]. 岩土力学, 2000,21(1): 32-35.(ZHANG Qi-hui, ZHAO Xi-hong. An influence on shear band formation of the rotation of principal stress directions[J]. Rock and Soil Mechanics, 2000,21(1): 32-35.(in Chinese))
    [11]
    罗强, 王忠涛, 栾茂田, 杨蕴明, 陈培震. 非共轴本构模型在地基承载力数值计算中若干影响因素的探讨[J]. 岩土力学, 2011,32(增1): 732-737.(LUO Qiang, WANG Zhong-tao, LUAN Mao-tian, YANG Yun-ming, CHEN Pei-zhen. Factors analysis of non-coaxial constitutive model’s application to numerical analysis of foundation bearing capacity[J]. Rock and Soil Mechanics,2011,32(supp 1): 732-737.(in Chinese))
    [12]
    Zienkiewicz O C, Humpheson C, Lewis R W. Associated and non-associated viscoplasticity and plasticity in soil mechanics[J]. Geotechnique,1975,25(4): 671-689.
    [13]
    郑颖人. 岩土数值极限分析方法的发展与应用[J]. 岩石力学与工程学报, 2012,31(7): 1297-1316.(ZHENG Ying-ren. Development and application of numerical limit analysis for geological materials[J]. Chinese Journal of Rock Mechanics and Engineering,2012,31(7): 1297-1316. (in Chinese))
    [14]
    郑颖人, 赵尚毅, 李安洪, 唐晓松. 有限元极限分析法及其在边坡中的应用[M]. 北京: 人民交通出版社, 2011.(ZHENG Ying-ren, ZHAO Shang-yi, LI An-hong, TANG Xiao-song. FEM Limit Analysis and Its Application in Slop Engineering[M]. Beijing: China Communications Press, 2011.(in Chinese))
    [15]
    郑颖人, 朱合华, 方正昌, 刘怀恒. 地下工程围岩稳定分析与设计理论[M]. 北京: 人民交通出版社, 2012.(ZHENG Ying-ren, ZHU He-hua, FANG Zheng-chang, LIU Huai-heng. The Stability Analysis and Design Theory of Surrounding Rock of Undergrounding Engineering[M]. Beijing: China Communications Press, 2011.(in Chinese))
    [16]
    董天文, 郑颖人. 基于强度折减法的桩基础有限元极限分析方法[J]. 岩土工程学报, 2010,32(増2): 162-165.(DONG Tian-wen, ZHENG Ying-ren. Limit analysis of FEM for pile foundation based on strength reduction[J]. Chinese Journal of Geotechnical Engineering,2010,32(supp 2): 162-165.(in Chinese))
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1448) PDF downloads(1615) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return