WAN Yun, WANG Zhen-qing, ZHOU Li-min, ZHANG Ji-feng. Effect of Surface Mechanical Attrition Treatment (SMAT) on the Tensile Performance of Fibre Reinforced Aluminium Laminates[J]. Applied Mathematics and Mechanics, 2014, 35(10): 1107-1114. doi: 10.3879/j.issn.1000-0887.2014.10.005
Citation: WAN Yun, WANG Zhen-qing, ZHOU Li-min, ZHANG Ji-feng. Effect of Surface Mechanical Attrition Treatment (SMAT) on the Tensile Performance of Fibre Reinforced Aluminium Laminates[J]. Applied Mathematics and Mechanics, 2014, 35(10): 1107-1114. doi: 10.3879/j.issn.1000-0887.2014.10.005

Effect of Surface Mechanical Attrition Treatment (SMAT) on the Tensile Performance of Fibre Reinforced Aluminium Laminates

doi: 10.3879/j.issn.1000-0887.2014.10.005
Funds:  The National Natural Science Foundation of China(11272096)
  • Received Date: 2014-04-08
  • Rev Recd Date: 2014-08-20
  • Publish Date: 2014-10-15
  • The surface mechanical attrition treatment (SMAT), as a technology that the metal sample surface is hit in random directions by a large amount of tiny hard balls in high frequency vibration within a short period of time, was applied to aluminium laminates. Then, the metal’s grain sizes, especially those near the surface, got smaller; and therefor the metal’s yield strength got enhanced. After the SMAT process, the aluminium laminates’ultimate stress and ultimate strain decreased a little, while the yield stress increased obviously. The glass fibre reinforced aluminium laminates were fabricated through heat pressing process with SMATed aluminium and glass fibre epoxy prepreg. From the tensile tests and theoretical calculation, the results show that the SMATed aluminium effectively improves the yield strength of the aluminiumbased composite.
  • loading
  • [1]
    Chen X H, Lu J, Lu K. Tensile properties of a nanocrystalline 316L austenitic stainless steel[J].Scripta Materialia,2005,52(10): 1039-1044.
    [2]
    Zhao Y H, Liao X Z, Cheng S, Ma E, Zhu Y T. Simultaneously increasing the ductility and strength of nanostructured alloys[J].Advanced Materials,2006,18(17): 2280-2283.
    [3]
    Waltz L, Retraint D, Roos A,Olier P. Combination of surface nanocrystallization and co-rolling: creating multilayer nanocrystalline composites[J].Scripta Materialia,2009,60(1): 21-24.
    [4]
    Chen A Y, Li D F, Zhang J B, Song H W, Lü J. Make nanostructured metal exceptionally tough by introducing non-localized fracture behaviors[J].Scripta Materialia,2008,59(6): 579-582.
    [5]
    Cortes P, Cantwell W J. The prediction of tensile failure in titanium-based thermoplastic fibre-metal laminates[J].Composites Science and Technology,2006,66(13): 2306-2316.
    [6]
    Petch N J. The fracture of metals[J].Progress in Metal Physics,1954, 5: 1-52.
    [7]
    Gleiter H. Nanocrystalline materials[J].Progress in Materials Science,1989,33: 223-315.
    [8]
    陈勇, 庞宝君, 郑伟, 张志远. 纤维金属层板低速冲击实验和数值仿真[J]. 复合材料学报, 2014,31(3): 733-740. doi: 10.13801/j.cnki.fhclxb.2014.03.026.(CHEN Yong, PANG Bao-jun, ZHENG Wei, ZHANG Zhi-yuan. Experimental tests and numerical simulation on low velocity impact performance of fiber metal laminates[J].Acta Materiae Compositae Sinica,2014,31(3): 733-740. doi: 10.13801/j.cnki.fhclxb.2014.03.026.(in Chinese))
    [9]
    马玉娥, 胡海威, 熊晓枫. 低速冲击下FML、铝板和复材的损伤对比研究[J]. 航空学报, 2014,35(1): 1-10.(MA Yu-e, HU Hai-wei, XIONG Xiao-feng. Comparison of damage in fibre metal laminates, aluminium and composite panel subjected to low-velocity impact[J].Acta Aeronautica et Astronautica Sinica,2014,35(1): 1-10.(in Chinese))
    [10]
    Seo H, Hundley J, Hahn H T, Yang J M. Numerical simulation of glass-fiber-reinforced aluminium laminates with diverse impact damage[J].AIAA Journal,2010,48(3): 676-687.
    [11]
    Sadighi M, Parnanen T, Alderliesten R C, Sayeaftabi M, Benedictus R. Experimental and numerical investigation of metal type and thickness effects on the impact resistance of fiber-metal laminates [J].Applied Composite Materials,2012,19(3): 545-559.
    [12]
    陈绍杰, 朱珊, 李萍. 纤维增强铝合金层板的发展与应用[J]. 航空学报, 1991,12(12): 589-597.(CHEN Shao-jie, ZHU Shan, LI Ping. Development and application of a fiber reinforced aluminium laminates[J].Acta Aeronautica et Astronautica Sinica,1991,12(12): 589-597.(in Chinese))
    [13]
    Alderliesten R C, Benedictus R. Fiber/metal composite technology for future primary aircraft structures[J].Journal of Aircraft,2008,45(4): 1182-1189.
    [14]
    Guo X, Leung A Y T, Chen A Y, Ruan H H, Lü J. Investigation of non-local cracking in layered stainless steel with nanostructrued interface[J].Scripta Materialia,2010,63(4): 403-406.
    [15]
    Chen X H, Lü J, Lu L, Lu K. Tensile properties of a nanocrystalline 316L austenitic stainless steel[J].Scripta Materialia,2005,52(10):1039-1044.
    [16]
    Zhang H W, Hei Z K, Liu G, Lü J, Lu K. Formation of nanostructured surface layer on AISI 304 stainless steel by means of surface mechanical attrition treatment[J].Acta Materialia,2003,51(7): 1871-1881.
    [17]
    Cho K T, Song K, Oh S H, Lee Y K. Surface hardening of aluminum alloy by shot peening treatment with Zn based ball[J].Materials Science and Engineering A,2012,543(13): 44-49.
    [18]
    Wu X, Tao N, Hong Y, Xu B, Lu J, Lu K. Microstructure and evolution of mechanically-induced ultrafine grain in surface layer of Al-alloy subjected to USSP[J].Acta Materialia,2002,50(8): 2075-2084.
    [19]
    Volt A, Gunnink J W.Fiber Metal Laminates [M]. Netherlands: Kluwer Academic Publishers, 2001: 73-75.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (792) PDF downloads(763) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return