HUANG Hu. Zakharov-Type Equations for Resonances of an Infinite Number of Ocean Surface Waves[J]. Applied Mathematics and Mechanics, 2014, 35(10): 1143-1150. doi: 10.3879/j.issn.1000-0887.2014.10.009
Citation: HUANG Hu. Zakharov-Type Equations for Resonances of an Infinite Number of Ocean Surface Waves[J]. Applied Mathematics and Mechanics, 2014, 35(10): 1143-1150. doi: 10.3879/j.issn.1000-0887.2014.10.009

Zakharov-Type Equations for Resonances of an Infinite Number of Ocean Surface Waves

doi: 10.3879/j.issn.1000-0887.2014.10.009
Funds:  The National Natural Science Foundation of China(11172157)
  • Received Date: 2014-03-24
  • Rev Recd Date: 2014-04-14
  • Publish Date: 2014-10-15
  • Based on the fundamental wave conservation laws of energy, momentum and action, together with the law of symmetry deciding interactions and the Hamilton structure, 2 main categories of resonance conditions for an infinite number of wave interactions and the corresponding 2 major Zakharov-type equations for an infinite number of wave resonances were derived by means of the complex Hamiltonian canonical equation for ocean surface waves, the canonical transformation and the Poisson bracket conditions. The presented Zakharov-type equations, in connection with the classical conditions for the 3,4 and 5-wave resonances, therefore build an indispensable, advanced and complete theoretical framework for the most fundamental and universal ocean wave turbulence.
  • loading
  • [1]
    Dirac P A M.The Principles of Quantum Mechanics [M]. Oxford: Oxford University Press, 1958.
    [2]
    Weinberg S.Cosmology [M]. Oxford: Oxford University Press, 2008.
    [3]
    严波, 刘小会, 赵莉, 周林抒. 存在内共振的覆冰四分裂导线的非线性舞动[J]. 应用数学和力学, 2014,35(1): 39-49.(YAN Bo, LIU Xiao-hui, ZHAO Li, ZHOU Lin-shu. Nonlinear galloping of iced quad-bundle conductors with internal resonances[J].Applied Mathematics and Mechanics,2014,35(1): 39-49.(in Chinese))
    [4]
    Kartashova E.Nonlinear Resonance Analysis [M]. Cambridge: Cambridge University Press, 2011.
    [5]
    Dysthe K, Krogstad H E, Müller P. Oceanic rogue waves[J].Annual Review of Fluid Mechanics,2008,40: 287-310.
    [6]
    Phillips O M. On the dynamics of unsteady gravity waves of finite amplitude—part 1: the elementary interactions[J].Journal of Fluid Mechanics,1960,9: 193-217.
    [7]
    Hasselmann K. On the non-linear energy transfer in a gravity-wave spectrum—part 1: general theory[J].Journal of Fluid Mechanics,1962,12: 481-500.
    [8]
    Zakharov V E. Stability of periodic waves of finite amplitude on the surface of a deep fluid[J].Journal of Applied Mechanics and Technical Physics,1968,9(2): 190-194.
    [9]
    Dyachenko A I, Lvov Y V. On the Hasselmann and Zakharov approaches to the kinetic equations in gravity waves[J]. Journal of Physical Oceanography,1995,25(12): 3237-3238.
    [10]
    杨振宁. 杨振宁文集[M]. 上海: 华东师范大学出版社, 1998.(YANG Chen-ning.Chen Ning Yang’s Collection [M]. Shanghai: The East China Normal University Publishing Press, 1998.(in Chinese))
    [11]
    Stiassnie M, Shemer L. On modifications of the Zakharov equation for surface gravity waves[J].Journal of Fluid Mechanics,1984,143: 47-67.
    [12]
    Krasitskii V P. On reduced equations in the Hamiltonian theory of weakly nonlinear surface waves[J].Journal of Fluid Mechanics,1994,272: 1-20.
    [13]
    Zakharov V. Statistical theory of gravity and capillary waves on the surface of a finite depth fluid[J].Eur J Mech B/Fluids,1999,18(3): 327-344.
    [14]
    黄虎. 无穷多海洋表面波相互作用的能量守恒和共振条件[J]. 应用数学和力学, 2014,35(5): 565-571.(HUANG Hu. Energy conservation and resonance conditions for interactions of an infinite number of ocean surface waves[J].Applied Mathematics and Mechanics,2014,35(5): 565-571.(in Chinese))
    [15]
    Zakharov V E, L’vov V S, Falkovich G.Kolmogorov Spectra of Turbulence I: Wave Turbulence[M]. Berlin: Springer, 1992.
    [16]
    McGoldrick L F. Resonant interactions among capillary-gravity waves[J].Journal of Fluid Mechanics,1965,21: 305-331.
    [17]
    McLean J W. Instabilities of finite amplitude gravity waves on water of finite depth[J].Journal of Fluid Mechanics,1982,114: 331-341.
    [18]
    Nazarenko S.Wave Turbulence [M]. Berlin: Springer, 2011.
    [19]
    Newell A C, Rumpf B. Wave turbulence[J].Annual Review of Fluid Mechanics,2011,43: 59-78.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1148) PDF downloads(742) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return