ZENG Qing-hong, SUN Wen-jun. MOF-MMALE Numerical Simulation of Multi-Material Large Deformation Flow Problems[J]. Applied Mathematics and Mechanics, 2014, 35(10): 1163-1176. doi: 10.3879/j.issn.1000-0887.2014.10.011
Citation: ZENG Qing-hong, SUN Wen-jun. MOF-MMALE Numerical Simulation of Multi-Material Large Deformation Flow Problems[J]. Applied Mathematics and Mechanics, 2014, 35(10): 1163-1176. doi: 10.3879/j.issn.1000-0887.2014.10.011

MOF-MMALE Numerical Simulation of Multi-Material Large Deformation Flow Problems

doi: 10.3879/j.issn.1000-0887.2014.10.011
Funds:  The National Natural Science Foundation of China(11001026;11371068);The National High-tech R&D Program of China (863 Program)(2012AA01A303)
  • Received Date: 2013-10-28
  • Rev Recd Date: 2014-02-24
  • Publish Date: 2014-10-15
  • In the numerical simulation of multi-material large deformation flow problems, the most important thing is tracking the material interfaces accurately while dealing with the large deformation of fluid simultaneously. The multi-material arbitrary Lagrangian Eulerian (MMALE) method coupled with the moment-of-fluid (MOF) interface reconstruction, was named a MOF-MMALE method and applied to multi-material large deformation flow problems. For the MOF-MMALE method, the mesh lines were allowed to cross the material interfaces and the mixed cells were introduced. In the mixed cells, the MOF interface reconstruction was used to determine the position and direction of the material interface. The numerical results of several typical examples, including the 2-material shock tube problem, the triple point problem, the Rayleigh-Taylor instability problem and the shock wave-Helium bubble interaction problem, show high accuracy and good resolution of the MOF-MMALE method, which is validated to be an effective way to simulate multi-material fluid flow problems with large deformation.
  • loading
  • [1]
    裴文兵, 朱少平. 激光聚变中的科学计算[J]. 物理, 2009,38(8): 559-568.(PEI Wen-bing, ZHU Shao-ping. Scientific computing for laser fusion[J].Physics,2009,38(8): 559-568.(in Chinese))
    [2]
    Kucharik M, Garimella R V, Schofield S P, Shashkov M J. A comparative study of interface reconstruction methods for multi-material ALE simulations[J].Journal of Computational Physics,2010,229(7): 2432-2452.
    [3]
    Benson D J. Computational methods in Lagrangian and Eulerian hydrocodes[J].Computer Methods in Applied Mechanics and Engineering,1992,99(2/3): 235-394.
    [4]
    LUO Hong, Baum J D, Lhner R. On the computation of multi-material flows using ALE formulation[J].Journal of Computational Physics,2004,194(1): 304-328.
    [5]
    Galera S, Maire P H, Breil J. A two-dimensional unstructured cell-centered multi-material ALE scheme using VOF interface reconstruction[J].Journal of Computational Physics,2010,229(16): 5755-5787.
    [6]
    Breil J, Galera S, Maire P H. Multi-material ALE computation in inertial confinement fusion code CHIC[J].Computer and Fluids,2011,46(1): 161-167.
    [7]
    Anbarlooei H R, Mazaheri K. Moment of fluid interface reconstruction method in multi-material arbitrary Lagrangian Eulerian (MMALE) algorithms[J].Computer Methods in Applied Mechanics and Engineering,2009,198(47/48): 3782-3794.
    [8]
    Barlow A J. Challenges and recent progress in developing numerical methods for multi-material ALE Hydrocodes[R]. ICFD 25 Year Anniversary Conference, 2008.
    [9]
    Dyadechko V, Shashkov M J. Moment-of-fluid interface reconstruction[R]. Technical Report LA-UR-05-7571, Los Alamos National Laboratory, 2005.
    [10]
    曾清红, 孙文俊, 勇珩. 柱坐标系下的MOF 界面重构方法研究[J]. 水动力学研究与进展, 2012,27(6): 704-712.(ZENG Qing-hong, SUN Wen-jun, YONG Heng. MOF interface reconstruction method in cylindrical coordinates[J].Chinese Journal of Hydrodynamics,2012,27(6): 704-712.(in Chinese))
    [11]
    Schofield S P, Christon M A, Dyadechko V, Garimella R V, Lowrie R B, Swartz B K. Multi-material incompressible flow simulation using the moment-of-fluid method[J].International Journal for Numerical Methods in Fluids,2010,63(8): 931-952.
    [12]
    Press W H, Teukolsky S A, Vettterling W T, Flannery B P.Numerical Recipes in C++, the Art of Scientific Computing [M]. 2nd ed. New York: Cambridge University Press, 2002.
    [13]
    Goncharov E A, Kolobyanin V Y, Sadchikov V V, Yanilkin Y V. Methods for computation of thermodynamic states of mixed cells in Lagrangian gas dynamics[R]. New Models and Hydrocodes for Shock Wave Processes in Condensed Matter, Dijon, France, 2006.
    [14]
    Caramana E J, Burton D E, Shashkov M J, Whalen P P. The construction of compatible hydrodynamics algorithms utilizing conservation of total energy[J].Journal of Computational Physics,1998,146(1): 227-262.
    [15]
    Caramana E J, Shashkov M J, Whalen P P. Formulations of artificial viscosity for multi-dimensional shock wave computations[J].Journal of Computational Physics,1998,144(1): 70-97.
    [16]
    Caramana E J, Shashkov M J. Elimination of artificial grid distortion and hourglass-type motions by means of Lagrangian sub-zonal masses and pressures[J].Journal of Computational Physics,1998,142(2): 521-561.
    [17]
    Barlow A J. A compatible finite element multi-material ALE hydrodynamics algorithm[J].International Journal for Numerical Methods in Fluid,2008,56(8): 953-964.
    [18]
    Loubere R, Shashkov M J. A subcell remapping method on staggered polygonal grids for arbitrary-Lagrangian-Eulerian methods[J].Journal of Computational Physics,2005,209(1): 105-138.
    [19]
    Haas J F, Sturtevant B. Interaction of weak shock waves with cylindrical and spherical gas inhomogeneities[J].Journal of Fluid Mechanics,1987,181: 41-76.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (939) PDF downloads(629) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return