XU Ding. A Uniformly Valid Series Solution to Sakiadis Flow[J]. Applied Mathematics and Mechanics, 2015, 36(2): 178-189. doi: 10.3879/j.issn.1000-0887.2015.02.007
Citation: XU Ding. A Uniformly Valid Series Solution to Sakiadis Flow[J]. Applied Mathematics and Mechanics, 2015, 36(2): 178-189. doi: 10.3879/j.issn.1000-0887.2015.02.007

A Uniformly Valid Series Solution to Sakiadis Flow

doi: 10.3879/j.issn.1000-0887.2015.02.007
Funds:  The National Natural Science Foundation of China(11102150)
  • Received Date: 2014-04-03
  • Rev Recd Date: 2014-11-17
  • Publish Date: 2015-02-15
  • In order to overcome the major mathematical difficulties in Sakiadis flow due to the semi-infinite flow domain and the asymptotic far field boundary condition, transformations were introduced for both the related independent variables and functions simultaneously, to convert the semi-infinite domain to a finite one and the asymptotic boundary condition to a convenient form. Then, based on the fixed point theory in functional analysis, the deduced nonlinear differential equation was solved, and an approximate semi-analytical series solution to Sakiadis flow was obtained. The calculation results show that the solution is uniformly valid in the semi-infinite domain, and the fixed point method makes an effective way to achieve approximate analytical solutions to differential equations.
  • loading
  • [1]
    Sakiadis B C. Boundary-layer behavior on continuous solid surfaces—II: the boundary layer on a continuous flat surface[J]. AIChE Journal,1961,7(2): 221-225.
    [2]
    Schlichting H, Gersten K. Boundary-Layer Theory [M]. Springer Verlag, 2000.
    [3]
    Tsou F K, Sparrow E M, Goldstein R J. Flow and heat transfer in the boundary layer on a continuous moving surface[J]. International Journal of Heat and Mass Transfer, 1967,10(2): 219-235.
    [4]
    Takhar H S, Nitu S, Pop I. Boundary layer flow due to a moving plate: variable fluid properties[J]. Acta Mechanica,1991,90(1/4): 37-42.
    [5]
    Pop I, Gorla R S R, Rashidi M. The effect of variable viscosity on flow and heat transfer to a continuous moving flat plate[J]. International Journal of Engineering Science,1992,30(1): 1-6.
    [6]
    Pantokratoras A. Further results on the variable viscosity on flow and heat transfer to a continuous moving flat plate[J]. International Journal of Engineering Science,2004,42(17/18): 1891-1896.
    [7]
    Andersson H I, Aarseth J B. Sakiadis flow with variable fluid properties revisited[J]. International Journal of Engineering Science,2007,45(2/8): 554-561.
    [8]
    Cortell R. A numerical tackling on Sakiadis flow with thermal radiation[J]. Chinese Phys Lett,2008,25(4): 1340-1342.
    [9]
    Pantokratoras A. The Blasius and Sakiadis flow with variable fluid properties[J]. Heat Mass Transfer,2008,44(10): 1187-1198.
    [10]
    Pantokratoras A. Asymptotic suction profiles for the Blasius and Sakiadis flow with constant and variable fluid properties[J]. Arch Appl Mech,2009,79(5): 469-478.
    [11]
    Ahmad S, Rohni A, Pop I. Blasius and Sakiadis problems in nanofluids[J]. Acta Mechanica,2011,218(3/4): 195-204.
    [12]
    Bataller R C. Radiation effects for the Blasius and Sakiadis flows with a convective surface boundary condition[J]. Appl Math Comput,2008,206(2): 832-840.
    [13]
    梅金德 O D. 纳米流体在粘性耗散和Newton传热组合影响下的Sakiadis流动分析[J]. 应用数学和力学, 2012,33(12): 1442-1450.(Makinde O D. Analysis of Sakiadis flow of nanofluids with viscous dissipation and Newtonian heating[J]. Applied Mathematics and Mechchanics,2012,33(12): 1442-1450.(in Chinese))
    [14]
    Salama A A, Mansour A A. Fourth-order finite-difference method for third-order boundary-value problems[J]. Numerical Heat Transfer, Part B: Fundamentals: An International Journal of Computation and Methodology,2005,47(4): 383-401.
    [15]
    Salama A A. Higher-order method for solving free boundary-value problems[J]. Numerical Heat Transfer, Part B: Fundamentals: An International Journal of Computation and Methodology, 2004,45(4): 385-394.
    [16]
    Xu D, Guo X. Fixed point analytical method for nonlinear differential equations[J]. Journal of Computational and Nonlinear Dynamics,2013,8(1): 011005.
    [17]
    Zeidler E. Nonlinear Functional Analysis and Its Applications I(Fixed-Point Theorems)[M]. New York: Springer-Verlag, 1986.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1102) PDF downloads(921) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return