ZENG Zhuo-xiong, WANG Zhang-jun, LIU Jian-quan. Numerical Analysis of Synergy Between Velocity Field and Temperature Field in Finned Tubes With Different Longitudinal Vortex Generators[J]. Applied Mathematics and Mechanics, 2015, 36(7): 744-755. doi: 10.3879/j.issn.1000-0887.2015.07.007
Citation: ZENG Zhuo-xiong, WANG Zhang-jun, LIU Jian-quan. Numerical Analysis of Synergy Between Velocity Field and Temperature Field in Finned Tubes With Different Longitudinal Vortex Generators[J]. Applied Mathematics and Mechanics, 2015, 36(7): 744-755. doi: 10.3879/j.issn.1000-0887.2015.07.007

Numerical Analysis of Synergy Between Velocity Field and Temperature Field in Finned Tubes With Different Longitudinal Vortex Generators

doi: 10.3879/j.issn.1000-0887.2015.07.007
Funds:  The National Natural Science Foundation of China(51066006)
  • Received Date: 2015-03-09
  • Rev Recd Date: 2015-06-04
  • Publish Date: 2015-07-15
  • In order to explore the comprehensive properties of heat convection in H-type finned tubes installed with small rectangular wings or triangular wings as the longitudinal vortex generators, the field synergy principle was adopted in analysis. At the same attack angle, the surface average and volume average synergy angles of the small triangular wings are bigger than those of the small rectangular wings; at the same time, the volume average synergy angles are bigger than the surface average ones. With the increase of the attack angle, both the surface average and volume average synergy angles decrease first but increase later, which reach their minimum values at the 60° attack angle for the rectangular wings but at the 45° attack angle for the triangular wings. At the same inlet velocity, both the surface average and volume average synergy angles of the 45°-attack-angle triangular wings are bigger than those of the 60°-attack-angle rectangular wings. With the increase of the inlet velocity, both the surface average and volume average synergy angles increase for the 60°-attack-angle rectangular wings and the 45°-attack-angle triangular wings as well.
  • loading
  • [1]
    王漳军, 曾卓雄, 徐义华, 田佳莹. H 形翅片管传热和阻力特性数值研究[J]. 计算机仿真, 2014,31(2):187-192.(WANG Zhang-jun, ZENG Zhuo-xiong, XU Yi-hua,TIAN Jia-rong. Numerical study on heat transfer and resistance characteristics of H-type finned tubes[J]. Computer Simulation,2014,31(2): 187-192.(in Chinese))
    [2]
    Joardar A, Jacobi A M. Heat transfer enhancement by winglet type vortex generator arrays in compact plain fin and tube heat exchangers[J]. International Journal of Refrigeration,2008,31(1): 87-97.
    [3]
    何雅玲, 楚攀, 谢涛. 纵向涡发生器在管翅式换热器中的应用及优化[J]. 化工学报, 2012,63(3): 746-760.(HE Ya-ling, CHU Pan, XIE Tao. Application and optimization of fin-and-tube heat exchangers with longitudinal vortex generators[J]. Chinese Journal of Chemical and Engineering,2012,63(3): 746-760.(in Chinese))
    [4]
    叶秋玲, 周国兵, 程金明, 周少祥, 程伟良. 矩形通道中不同涡流发生器对换热和压降的影响[J]. 中国电机工程, 2010,30(11): 86-91.(YE Qiu-ling, ZHOU Guo-bing, CHENG Jin-ming, ZHOU Shao-xiang, CHENG Wei-liang. Influence of different vortex generators on heat transfer enhancement and pressure drop characteristics in a rectangular channel[J]. Proceedings of the CSEE,2010,30(11): 86-91.(in Chinese))
    [5]
    Kannan K T, Kumar B S. Heat transfer and fluid flow analysis in plate fine and tube heat exchangers with different shaped vortex generators[J]. International of Journal of Soft Computing and Engineering,2011〖STHZ〗, 2(1): 2231-2307.
    [6]
    Salviano L O, Dezan D J, Yanagihara J I. Optimization of winglet-type vortex generator positions and angles in plate-fin compact heat exchanger: response surface methodology and direct optimization[J]. International Journal of Heat and Mass Transfer,2015,82: 373-387.
    [7]
    Gholami A A, Wahid M A, Mohammed H A. Heat transfer enhancement and pressure drop for fin-and-tube compact heat exchangers with wavy rectangular winglet-type vortex generators[J]. International Communications in Heat and Mass Transfer,2014,54: 132-140.
    [8]
    田林, 柏巍, 薛山虎, 黄自鹏, 王秋旺. 纵向涡发生器对矩形通道内流动换热的影响研究[J]. 工程热物理学报, 2013,34(2): 324-327.(TIAN Lin, BAI Wei, XUE Shan-hu, HUANG Zi-peng, WANG Qiu-wang. Numerical study of influence of longitudinal vertex generator on flow and heat transfer in rectangular channel[J]. Journal of Engineering Thermophysics,2013,34(2): 324-327.(in Chinese))
    [9]
    唐凌虹, 谭思超, 高璞珍. 纵向涡发生器作用下矩形通道内流动换热性能研究[J]. 原子能科学技术, 2014,48(5): 812-817.(TANG Ling-hong, TAN Si-chao, GAO Pu-zhen. Study on flow and heat transfer characteristic in rectangular channel with longitudinal vortex generator[J]. Atomic Energy Science and Technology,2014,48(5): 812-817.(in Chinese))
    [10]
    Chu P, He Y L, Lei Y G, Tian L T, Li R. Three-dimensional numerical study on fin-and-oval-tube heat exchanger with longitudinal vortex generators[J]. Applied Thermal Engineering,2009,29(5/6): 859-876.
    [11]
    过增元, 黄素逸. 场协同原理与强化换热新技术[M]. 北京: 中国电力出版社, 2004.(GUO Zeng-yuan, HUANG Su-yi. Field Synergy Principle and New Technology of Heat Transfer Enhancement[M]. Beijing: China Electric Power Press, 2004.(in Chinese))
    [12]
    黄德斌, 邓先和, 朱冬生, 欧阳惕. 气流横向冲刷管束湍流换热的场协同分析[J]. 化学工程, 2006,34(7): 13-16.(HUANG De-bin, DENG Xian-he, ZHU Dong-sheng, OUYANG Ti. Field coordination analysis of gas flow across tube bundles[J]. Chemical Engineering,2006,34(7): 13-16.(in Chinese))
    [13]
    鄂加强, 张双利, 傅学正, 李玉强, 董江东, 张彬. 醇基燃料燃烧器的性能和场协同分析[J]. 华南理工大学学报(自然科学版), 2011,39(8): 66-71.(E Jia-qiang, ZHANG Shuang-li, FU Xue-zheng, LI Yu-qiang, DONG Jiang-dong, ZHANG Bin. Performance and field synergy analysis of alcohol-based fuel burner[J]. Journal of South China University of Technology(Natural Science Edition),2011,39(8): 66-71.(in Chinese))
    [14]
    冷学礼, 张冠敏, 田茂诚, 程林. 场协同原理在对流换热中的应用方法[J]. 热能动力工程, 2009,24(3): 352-354.(LENG Xue-li, ZHANG Guan-min, TIAN Mao-cheng, CHENG Lin. Methods for applying field synergy principle in convection heat exchange[J]. Journal of Engineering for Thermal Energy and Power,2009,24(3): 352-354.(in Chinese))
    [15]
    刘聿拯, 袁益超, 徐世泽, 吴文斌. H形鳍片管束传热与阻力特性实验研究[J]. 上海理工大学学报, 2004,26(5): 457-460.(LIU Yu-zheng, YUAN Yi-chao, XU Shi-ze, WU Wen-bin. Experimental study on the characteristics of heat transfer and flow resistance for H-type finned tube banks[J]. Journal of University of Shanghai for Science and Technology,2004,26(5): 457-460.(in Chinese))
    [16]
    张知翔, 王云刚, 赵钦新. H型鳍片管传热特性数值模拟及验证[J]. 动力工程学报, 2010,30(5): 368-371.(ZHANG Zhi-xiang, WANG Yun-gang, ZHAO Qin-xin. Numerical simulation and verification on heat transfer characteristics of H-type finned tubes[J]. Journal of Chinese Society of Power Engineering,2010,30(5): 368-371.(in Chinese))
    [17]
    普华煤燃烧技术开发中心编写组. 联邦德国锅炉性能设计计算方法[R]. 哈尔滨普华煤燃烧技术开发中心, 1992.(Coal combustion technology development center of PuHua writing group. Calculation method of boiler performance design by the Federal Republic of Germany[R]. Coal Combustion Technology Development Center of Harbin, 1992.(in Chinese))
    [18]
    Georges G K. 锅炉机组热力计算标准方法[M]. 北京锅炉厂, 译. 北京: 机械工业出版社, 1973: 62-65.(Georges G K. Standard Method for Boiler Thermo-Dynamic Calculation[M]. Beijing Boiler Factory, transl. Beijing: Mechanical Industry Press, 1973: 62-65.(in Chinese))
    [19]
    武俊梅, 陶文铨. 纵向涡强化通道内换热的数值研究及机理分析[J]. 西安交通大学学报,2006,40(9): 996-1000.(WU Jun-mei, TAO Wen-quan. Numerical investigation and analysis of the heat transfer enhancement in channel by longitudinal vortex based on the field synergy principle[J]. Journal of Xi’an Jiaotong Univeresity,2006,40(9): 996-1000.(in Chinese))
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (975) PDF downloads(632) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return