Citation: | BAI Long, DONG Zhi-feng, GE Xin-sheng. Lie Group and Lie Algebra Modeling for Numerical Calculation of Rigid Body Dynamics[J]. Applied Mathematics and Mechanics, 2015, 36(8): 833-843. doi: 10.3879/j.issn.1000-0887.2015.08.005 |
[1] |
Chaturvedi N A, Lee T, Leok M, McClamroch N H. Nonlinear dynamics of the 3D pendulum[J].Nonlinear Science,2011,21(1): 3-32.
|
[2] |
边宇枢, 高志慧. 6自由度水下机器人动力学分析与运动控制[J]. 机械工程学报, 2007,43(7): 87-92.(BIAN Yu-shu, GAO Zhi-hui. Dynamic analysis and motion control of 6-dof underwater robot [J].Chinese Journal of Mechanical Engineering,2007,43(7):87-92.(in Chinese))
|
[3] |
徐正武, 唐国元. 四元数在水下航行体运动建模中的应用[J]. 中国舰船研究, 2014,9(2): 12-29.(XU Zheng-wu, TANG Guo-yuan. Applying the four-parameter approach to establish the motion model of an AUV[J].Chinese Journal of Ship Research,2014,9(2): 12-29.(in Chinese))
|
[4] |
LIN Xi-chuan, GUO Shu-xiang. A simplified dynamics modeling of a spherical underwater vehicle[C]// Proceeding of the 2008 IEEE International Conference on Robotics and Blomimetics,2009: 1140-1145.
|
[5] |
Lee T. Computational geometric mechanics and control of rigid bodies[D]. Ph D Thesis. Michigan: University of Michigan, 2008.
|
[6] |
Lee T, McClamroch H N, Leok M. A Lie group variational integrator for the attitude dynamics of a rigid body with application to the 3D pendulum[C]//Proceedings of the IEEE International Conference on Control Applications,2005: 962-967.
|
[7] |
Nordkvist N, Sanyal A K. A Lie group variational integrator for rigid body motion in SE(3) with applications to underwater vehicle dynamics[C]//49th IEEE Conference on Decision and Control,2010: 5414-5419.
|
[8] |
Jiménez F, Kobilarov M, de Diego D M. Discrete variational optimal control[J].Journal of Nonlinear Science,2013,23(3): 393-426.
|
[9] |
丁希仑, 刘颖. 用李群李代数分析具有空间柔性变形杆件的机器人动力学[J]. 机械工程学报, 2007,43(12):184-189.(DING Xi-lun, LIU Ying. Dynamics analysis of robot with spatial compliant links using Lie group and Lie algebra[J].Chinese Journal of Mechanical Engineering,2007,43(12): 184-189.(in Chinese))
|
[10] |
张继锋, 邓子辰, 张凯. 结构动力方程求解的改进精细Runge-Kutta方法[J]. 应用数学和力学, 2015,36(4): 378-385.(ZHANG Ji-feng, DENG Zi-chen, ZHANG Kai. An improved precise Runge-Kutta method for structural dynamic equations[J].Applied Mathematics and Mechanics,2015,36(4): 378-385.(in Chinese))
|
[11] |
李庆军, 叶学华, 王博, 王艳. 辛Runge-Kutta方法在卫星交会对接中的非线性动力学应用研究[J]. 应用数学和力学, 2014,〖STHZ〗35(12): 1299-1370.(LI Qing-jun, YE Xue-hua, WANG Bo, WANG Yan. Nonlinear dynamic behavior of the satellite rendezvous and docking based on the symplectic Runge-Kutta method[J].Applied Mathematics and Mechanics,2014,35(12): 1299-1370.(in Chinese))
|
[12] |
白龙, 戈新生. 基于李群离散变分积分子3D摆姿态动力学研究[J]. 北京信息科技大学学报, 2013,28(3): 14-18.(BAI Long, GE Xin-sheng. Attitude dynamics of 3D pendulum based on the Lie group variational integrator[J].Journal of Beijing Information Science and Technology University,2013,28(3): 14-18.(in Chinese))
|
[13] |
白龙, 戈新生. 基于球摆模型的离散变分积分子算法研究[J]. 动力学与控制学报, 2013,11(4): 295-300.(BAI Long, GE Xin-sheng. The discrete variational integrators method of the spherical pendulum[J].Journal of Dynamics and Control, 2013,11(4): 295-300.(in Chinese))
|
[14] |
刘延柱. 高等动力学[M]. 北京: 高等教育出版社, 2001: 93-105.(LIU Yan-zhu.Advanced Dynamics [M]. Beijing: Higher Education Press, 2001: 93-105.(in Chinese))
|
[15] |
丁丽娟, 程杞元. 数值计算方法[M]. 北京: 高等教育出版社, 2011: 300-305.(DING Li-juan, CHENG Qi-yuan.Numerical Computation Method [M]. Beijing: Higher Education Press, 2011: 300-305.(in Chinese))
|
[16] |
Onishchik A L.Lie Groups and Lie Algebras: Foundations of Lie Theory, Lie Transformation Groups [M]. Beijing: Science Press, 2008: 44-52.
|