LIU Ying, YIN Yan-fei, ZHANG De-fa, ZHANG Zhi-liang. Analysis of Non-Newtonian Blood Flow in Stenotic Carotid Artery Under Fluid-Structure Interaction[J]. Applied Mathematics and Mechanics, 2015, 36(10): 1058-1066. doi: 10.3879/j.issn.1000-0887.2015.10.005
Citation: LIU Ying, YIN Yan-fei, ZHANG De-fa, ZHANG Zhi-liang. Analysis of Non-Newtonian Blood Flow in Stenotic Carotid Artery Under Fluid-Structure Interaction[J]. Applied Mathematics and Mechanics, 2015, 36(10): 1058-1066. doi: 10.3879/j.issn.1000-0887.2015.10.005

Analysis of Non-Newtonian Blood Flow in Stenotic Carotid Artery Under Fluid-Structure Interaction

doi: 10.3879/j.issn.1000-0887.2015.10.005
Funds:  The National Natural Science Foundation of China(51165031)
  • Received Date: 2015-04-07
  • Rev Recd Date: 2015-06-16
  • Publish Date: 2015-10-15
  • The non-Newtonian transient blood flow with fluid-structure interaction was numerically simulated for 6 stenosis ratios of carotid arteries with the computational fluid dynamics method. The effects of the carotid artery stenosis ratio on the hemodynamic performance were investigated to clarify the relationship between the stenosis ratio and the atherosclerotic plaque formation and development in the carotid artery. The results show that, different stenosis ratios of the carotid artery result in obviously dissimilar hemodynamic characteristic distributions. Compared with the stenosis ratios of 0.05, 0.1, 0.2, 0.3 and 0.4, the stenosis ratio of 0.5 corresponds to strikingly larger blood stagnant vortex flow zones around the stenotic section. Under the action of the complex bood flow field, lower wall pressure, abnormal wall shear stress distribution, larger total mesh displacement and higher von Mises stress will occur around this section, where the lipid and fibrin macromolecules may easily deposit due to low-speed blood flow. Meanwhile, low wall pressure may cause obvious‘negative pressure’effects, and in turn insufficient blood supply for brain. Furthermore, the atherosclerotic plaques are liable to rupture and fall off under abnormal wall shear stress distribution, and consequently block the blood vessel in brain. Large vascular von Mises stress may cause stress concentration and rupture of blood vessel, providing favorable conditions for the occurrence of stroke. Therefore, the larger stenosis ratio the carotid artery has, the greater the influence is on the formation and development of atherosclerotic plaques,and the higher the possibility of cerebral ischemic stroke occurs.
  • loading
  • [1]
    王桦, 赵晟珣, 曾尔亢, 马春薇, 王家瑜, 段凌. 中国人口老龄化社会发展与应对策略[J]. 中国社会医学杂志, 2014,32(2): 75-77.(WANG Hua, ZHAO Sheng-xun, ZENG Er-kang, MA Chun-wei, WANG Jia-yu, DUAN Ling. The social development and the coping strategies for China’s aging population[J]. Chinese Journal of Social Medicine,2014,32(2): 75-77.(in Chinese))
    [2]
    LIU Li-ping, Wang D, Wong K S L, WANG Yong-jun. Stroke and stroke care in China huge burden, significant workload, and a national priority[J]. Stroke,2011,42(12): 3651-3654.
    [3]
    曹琼, 裴毓华, 倪超超. 颈动脉粥样硬化斑块的稳定性及数值仿真研究进展[J]. 固体力学学报, 2014,35(1): 69-72.(CAO Qiong, PEI YU-hua, NI Chao-chao. Progress in the study of stability and numerical simulation of carotid atherosclerotic plaque[J]. Chinese Journal of Solid Mechanics,2014,35(1): 69-72.(in Chinese))
    [4]
    Hogberg D, Kragsterman B, Bjrck M, Tjrnstrm J, Wanhainen A. Carotid artery atherosclerosis among 65-year-old Swedish men—a population-based screening study[J]. European Journal of Vascular and Endovascular Surgery,2014,48(1): 5-10.
    [5]
    马瑞艳, 刘赵淼, 张谭, 叶红玲, 史艺. T型分叉血管中血液流动对动脉血栓形成的影响[J]. 医用生物力学, 2009,24(2): 98-106.(MA Rui-yan, LIU Zhao-miao, ZHANG Tan, YE Hong-ling, SHI Yi. Influence on thrombus formation by blood flow in T-bifurcation of artery[J]. Journal of Medical Biomechanics,2009,24(2): 98-106.(in Chinese))
    [6]
    吕绍茂, 钟华, 陈丽君, 段少银. 构建颈内动脉瘤双向流固耦合模型的血流模拟[J]. 中国组织工程研究, 2014,18(2): 218-224.(Lū Shao-mao, ZHONG Hua, CHEN Li-jun, DUAN Shao-yin. Blood flow simulation of internal carotid artery aneurysm using two-way flow-solid coupling method[J]. Chinese Journal of Tissue Engineering Research,2014,18(2): 218-224.(in Chinese))
    [7]
    顾媛, 郦鸣阳, 沈力行, 俞洪流, 丁皓, 赵改平. 狭窄动脉流固耦合模型Ansys/CFX数值的有限元分析[J]. 中国组织工程研究与临床康复, 2008,12(52): 10293-10296.(GU Yuan, LI Ming-yang, SHEN Li-xing, YU Hong-liu, DING Hao, ZHAO Gai-ping. Finite element analysis of stenosed artery-blood coupling model in Ansys/CFX[J]. Chinese Journal of Tissue Engineering Research,2008,12(52): 10293-10296.(in Chinese))
    [8]
    Jozwik K, Obidowski D. Numerical simulations of the blood flow through vertebral arteries[J]. Journal of Biomechanics,2010,43(2): 177-185.
    [9]
    杨金有, 徐跃平, 俞航, 刘静, 单晶心, 郭金明, 洪洋. 人体主动脉弓内非牛顿血液流动数值模拟分析[J]. 中国医学物理学杂志, 2011,28(1): 2422-2425.(YANG Jin-you, XU Yue-ping, YU Hang, LIU Jing, SHAN Jing-xin, GUO Jin-ming, HONG Yang. Numerical simulation the non-Newtonian blood flow in human aortic arch[J]. Chinese Journal of Medical Physics,2011,28(1): 2422-2425.(in Chinese))
    [10]
    Morales H G, Larrabide I, Geers A J, Aguilar M L, Frangi A F. Newtonian and non-Newtonian blood flow in coiled cerebral aneurysms[J]. Journal of Biomechanics,2013,46(13): 2158-2164.
    [11]
    Matos H M, Oliveira P J. Steady and unsteady non-Newtonian inelastic flows in a planar T-junction[J]. International Journal of Heat and Fluid Flow,2013,39: 102-126.
    [12]
    Chatziprodromou I, Tricoli A, Poulikakos D, Ventikos Y. Haemodynamics and wall remodelling of a growing cerebral aneurysm: a computational model[J]. Journal of Biomechanics,2007,40(2): 412-426.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1306) PDF downloads(919) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return