XING Jing-nan, JIAN Yong-jun. Electrokinetic Energy Conversion Efficiency in Rectangular Nanochannels[J]. Applied Mathematics and Mechanics, 2016, 37(4): 363-372. doi: 10.3879/j.issn.1000-0887.2016.04.004
Citation: XING Jing-nan, JIAN Yong-jun. Electrokinetic Energy Conversion Efficiency in Rectangular Nanochannels[J]. Applied Mathematics and Mechanics, 2016, 37(4): 363-372. doi: 10.3879/j.issn.1000-0887.2016.04.004

Electrokinetic Energy Conversion Efficiency in Rectangular Nanochannels

doi: 10.3879/j.issn.1000-0887.2016.04.004
Funds:  The National Natural Science Foundation of China(11472140)
  • Received Date: 2015-11-11
  • Rev Recd Date: 2015-12-17
  • Publish Date: 2016-04-15
  • The streaming potential and electrokinetic energy conversion efficiency in rigid rectangular nanochannels were studied via the variable separation approach. The analytic expressions for the streaming potential and electrokinetic energy conversion efficiency were obtained through solution of the linearized PoissonBoltzmann equation for the electric potential and the NavierStokes equation for the velocity field. By means of numerical computations, the influences of dimensionless electrokinetic width K,channel width to height ratio α and wall Zeta potential ζ on both the streaming potential and the electrokinetic energy conversion efficiency were discussed. The results show that the streaming potential exhibits monotonic decrease with K, while the electrokinetic energy conversion efficiency first increases with K for small K values, then decreases with K for large K values, when other parameters are given. In addition, the streaming potential increases with α. The electrokinetic energy conversion efficiency first increases with α for small K values, then decreases with α for large K values. Finally, both the streaming potential and the electrokinetic energy conversion efficiency increase significantly with the wall Zeta potential.
  • loading
  • [1]
    Ma H C, Keh H J. Diffusioosmosis of electrolyte solutions in a capillary slit with adsorbed polyelectrolyte layers[J]. Journal of Colloid and Interface Science,2007,313(2): 686-696.
    [2]
    Squires T M, Quake S R. Microfluidics: fluid physics at the nanoliter scale[J]. Reviews of Modern Physics,2005,77(3): 977-1026.
    [3]
    JIAN Yong-jun, LIU Quan-sheng, YANG Lian-gui. AC electroosmotic flow of generalized Maxwell fluids in a rectangular microchannel[J]. Journal of Non-Newtonian Fluid Mechanics,2011,166(21): 1304-1314.
    [4]
    SU Jie, JIAN Yong-jun, CHANG Long. Thermally fully developed electroosmotic flow through a rectangular microchannel[J]. International Journal of Heat and Mass Transfer,2012,55(21/22): 6285-6290.
    [5]
    杨大勇, 王阳. 微通道中电渗流及微混合的离子浓度效应[J]. 应用数学和力学, 2015,36(9): 981-989.(YANG Da-yong, WANG Yang. In microchannel of the electroosmotic flow and micro-mixing of the ion concentration effect[J]. Applied Mathematics and Mechanics,2015,36(9): 981-989.(in Chinese))
    [6]
    ZHAO Guang-pu, JIAN Yong-jun, CHANG Long, Buren M D L. Magnetohydrodynamic flow of generalized Maxwell fluids in a rectangular micropump under an AC electric field[J]. Journal of Magnetism and Magnetic Materials,2015,387: 111-117.
    [7]
    Buren M D L, Jian Y J, Chang L. Electromagnetohydrodynamic flow through a microparallel channel with corrugated walls[J]. Journal of Physics D: Applied Physics,2014,47(42): 425501.
    [8]
    Donath E, Voigt E. Steaming current and streaming potential on structured surfaces[J]. Journal of Colloid and Interface Science,1986,109(1): 122-139.
    [9]
    Starov V M, Solomentsev Y E. Influence of gel layers on electrokinetic phenomena—1: streaming potential[J]. Journal of Colloid and Interface Science,1993,158(1): 159-165.
    [10]
    Starov V M, Solomentsev Y E. Influence of gel layers on electrokinetic phenomena—2:effect of ions interaction with the gel layer[J]. Journal of Colloid and Interface Science,1993,158(1): 166-170.
    [11]
    Masliyah J H, Bhattacharjee S. Electrokinetic and Colloid Transport Phenomena [M]. Canada: John Wiley & Sons,2006: 240-253.
    [12]
    Ohshima H, Kondo T. Electrokinetic flow between two parallel plates with surface charge layers:electro-osmosis and streaming potential[J]. Journal of Colloid and Interface Science,1990,135(2): 443-448.
    [13]
    龚磊, 吴健康, 王蕾, 晁侃. 微通道周期流动电位势及电粘性效应[J]. 应用数学和力学, 2008,29(6): 649-656.(GONG Lei, WU Jian-kang, WANG Lei, CHAO Kan. Periodical streaming potential and electro-viscous effects in microchannel flow[J]. Applied Mathematics and Mechanics,2008,29(6): 649-656.(in Chinese))
    [14]
    Das S, Guha A, Mitra S K. Exploring new scaling regimes for streaming potential and electroviscous effects in a nanocapillary with overlapping electric double layers[J]. Analytica Chimica Acta,2013,804: 159-166.
    [15]
    Chen G, Das S. Streaming potential and electroviscous effects in soft nanochannels beyond Debye-Huckel linearization[J]. Journal of Colloid and Interface Science,2015,445: 357-363.
    [16]
    Daiguji H, Yang P, Szeri A J, Majumdar A. Electrochemomechanical energy conversion in nanofluidic channels[J]. Nano Letters,2004,4(12): 2315-2321.
    [17]
    Wang M, Kang Q. Electrochemomechancial energy conversion efficiency in silica nanochannels[J]. Microfluidics and Nanofluidics,2010,9(2): 181-190.
    [18]
    Chanda S, Sinha S, Das S. Streaming potential and electroviscous effects in soft nanochannels: towards designing more efficient nanofluidic electrochemomechanical energy converters[J]. Soft Matter,2014,10(38): 7558-7568.
    [19]
    Bandopadhyay A, Chakraborty S. Giant augmentations in electro-hydro-dynamic energy conversion efficiencies of nanofluidic devices using viscoelastic fluids[J]. Applied Physics Letters,2012,101(4): 043905.
    [20]
    Wambsganss M W, Jendrzejczyk J A, France D M. Two-phase flow patterns and transitions in a small, horizontal, rectangular channel[J]. International Journal of Multiphase Flow,1991,17(3): 327-342.
    [21]
    Das S, Chakraborty S. Transport and separation of charged macromolecules under nonlinear electromigration in nanochannels[J].Langmuir,2008,24(15): 7704-7710.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1099) PDF downloads(866) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return