LUO Yan, LI Ming, YANG Da-yong. Simmulation of Mixed Electroosmotic and Pressure-Driven Flows of Power-Law Fluids in Microchannels[J]. Applied Mathematics and Mechanics, 2016, 37(4): 373-381. doi: 10.3879/j.issn.1000-0887.2016.04.005
Citation: LUO Yan, LI Ming, YANG Da-yong. Simmulation of Mixed Electroosmotic and Pressure-Driven Flows of Power-Law Fluids in Microchannels[J]. Applied Mathematics and Mechanics, 2016, 37(4): 373-381. doi: 10.3879/j.issn.1000-0887.2016.04.005

Simmulation of Mixed Electroosmotic and Pressure-Driven Flows of Power-Law Fluids in Microchannels

doi: 10.3879/j.issn.1000-0887.2016.04.005
Funds:  The National Natural Science Foundation of China(11302095)
  • Received Date: 2015-11-25
  • Rev Recd Date: 2015-12-21
  • Publish Date: 2016-04-15
  • The pressure effects on electroosmotic flows of power-law fluids in microchannels were investigated. The electric double layer (EDL) potential was described with the Poisson-Boltzmann (P-B) equation, and the flow field distribution of the power-law fluid was characterized with the Navier-Stokes (N-S) equation. Numerical simulation was carried out to discuss the influences of the dimensionless Debye-Huckel parameter, the wall Zeta potential and the flow behavior index on the flow properties and the Poiseuille number. The results reveal that, in the case of the same pressure gradient direction with the electric field direction, the velocity of a shear-thinning fluid is higher than that of a shear-thickening one, whereas the result will be opposite for a reverse pressure gradient direction. The Poiseuille number is an increasing function of the dimensionless Debye-Huckel parameter, the Zeta potential and the flow behavior index.
  • loading
  • [1]
    Cheng S B, Skinner C D, Taylor J, Attiya S, Lee W E, Picelli G, Harrison D J. Development of a multichannel microfluidic analysis system employing affinity capillary electrophoresis for immunoassay[J]. Analytical Chemistry,2001,73(7): 1472-1479.
    [2]
    Buchholz B A, Doherty E A S, Albarghouthi M N, Bogdan F M, Zahn J M, Barron A E. Microchannel DNA sequencing matrices with a thermally controlled “viscosity switch”[J]. Analytical Chemistry,2001,73(2): 157-164.
    [3]
    Choban E R, Markoski L J, Wieckowski A, Kenis P J A. Microfluidic fuel cell based on laminar flow[J]. Journal of Power Sources,2004,128(1): 54-60.
    [4]
    李战华, 吴健康, 胡国庆, 胡国辉. 微流控芯片中的流体流动[M]. 北京: 科学出版, 2012.(LI Zhan-hua, WU Jian-kang, HU Guo-qing, HU Guo-hui. Fluid Flow in Microfluidic Chips [M]. Beijing: Science Press, 2012.(in Chinese))
    [5]
    XUAN Xiang-chun, LI Dong-qing. Electroosmotic flow in microchannels with arbitrary geometry and arbitrary distribution of wall charge[J]. Journal of Colloid and Interface Science,2005,289(1): 291-303.
    [6]
    Zimmerman W B, Rees J M, Craven T J. Rheometry of non-Newtonian electrokinetic flow in a microchannel T-junction[J]. Microfluidics and Nanofluidics,2006,2(6): 481-492.
    [7]
    Wang J, Wang M, Li Z. Lattice Poisson-Boltzmann simulations of electro-osmotic flows in microchannels[J]. Journal of Colloid and Interface Science,2006,296(2): 729-736.
    [8]
    Tang G H, Li X F, He Y L, Tao W Q. Electroosmotic flow of non-Newtonian fluid in microchannels[J]. Journal of Non-Newtonian Fluid Mechanics,2009,157(1/2): 133-137.
    [9]
    Tang G H, Ye P X, Tao W Q. Electroviscous effect on non-Newtonian fluid flow in microchannels[J]. Journal of Non-Newtonian Fluid Mechanics,2010,165(7/8): 435-440.
    [10]
    Hadigol M, Nosrati R, Raisee M. Numerical analysis of mixed electroosmotic/pressure driven flow of power-law fluids in microchannels and micropumps[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2011,374(1/3): 142-153.
    [11]
    Hadigol M, Nosrati R, Nourbakhsh A, Raisee M. Numerical study of electroosmotic micromixing of non-Newtonian fluids[J]. Journal of Non-Newtonian Fluid Mechanics,2011,166(17/18): 965-971.
    [12]
    杨大勇, 王阳. 微通道中电渗流及微混合的离子浓度效应[J]. 应用数学和力学, 2015,36(9): 981-989.(YANG Da-yong, WANG Yang. Effects of ion concentration on electroosmotic flow and micromixing in microchannels[J]. Applied Mathematics and Mechanics,2015,36(9): 981-989.(in Chinese))
    [13]
    Babaie A, Sadeghi A, Saidi M H. Combined electroosmotically and pressure driven flow of power-law fluids in a slit microchannel[J]. Journal of Non-Newtonian Fluid Mechanics,2011,166(14/15): 792-798.
    [14]
    Babaie A, Saidi M H, Sadeghi A. Electroosmotic flow of power-law fluids with temperature dependent properties[J]. Journal of Non-Newtonian Fluid Mechanics,2012,185/186: 49-57.
    [15]
    Brown A B D, Smith C G, Rennie A R. Pumping of water with ac electric fields applied to asymmetric pairs of microelectrodes[J]. Physical Review E,2000,63(1): 016305.
    [16]
    Mala G M, LI Dong-qing. Flow characteristics of water in microtubes[J]. International Journal of Heat and Fluid Flow,1999,20(2): 142-148.
    [17]
    Vocale P, Geri M, Cattani L, Spiga M. Electro-osmotic heat transfer in elliptical microchannels under H1 boundary condition[J]. International Journal of Thermal Sciences,2013,72: 92-101.
    [18]
    Zhao C, Zholkovskij E, Masliyah J H, Yang C. Analysis of electroosmotic flow of power-law fluids in a slit microchannel[J]. Journal of Colloid and Interface Science,2008,326(2): 503-510.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1232) PDF downloads(611) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return