A. Y. T. Leung, ZHENG Jian-jun. Closed Form Stress Distribution in 2D Elasticity for all Boundary Conditions[J]. Applied Mathematics and Mechanics, 2007, 28(12): 1455-1467.
Citation: A. Y. T. Leung, ZHENG Jian-jun. Closed Form Stress Distribution in 2D Elasticity for all Boundary Conditions[J]. Applied Mathematics and Mechanics, 2007, 28(12): 1455-1467.

Closed Form Stress Distribution in 2D Elasticity for all Boundary Conditions

  • Received Date: 2006-01-30
  • Rev Recd Date: 2007-11-08
  • Publish Date: 2007-12-15
  • A Hamiltonian method was applied to study analytically the stress distributions of orthotropic two-dimensional elasticity in (x, z) plane for arbitrary boundary conditions without beam assumptions. It is a method of separable variables for partial differential equations using displacements and their conjugate stresses as unknowns. Since coordinates (x, z) cannot be easily separated, an alternative symplectic expansion was used. Similar to the Hamiltonian formulation in classical dynamics, the x coordinate as time variable so that z becomes the only independent coordinate in the Hamiltonian matrix differential operator. The exponential of the Hamiltonian matrix is symplectic. There are homogenous solutions with constants to be determined by the boundary conditions and particular integrals satisfying the loading conditions. The homogenous solutions consist of the eigen-solutions of the derogatory zero eigenvalues (zero eigen-solutions) and that of the wellbehaved nonzero eigenvalues (nonzero eigen-solutions). The Jordan chains at zero eigenvalues give the classical Saint Venant solutions associated with averaged global behaviors such as rigid-body translation, rigid-body rotation or bending. On the other hand, the nonzero eigen-solutions describe the exponentially decaying localized solutions usually ignored by Saint-Venant's principle. Completed numerical examples were newly given to compare with established results.
  • loading
  • [1]
    Williams M L. Stress singularities resulting from various boundary conditions in angular corners of plates in extension[J].ASME Journal of Applied Mechanics,1952,19(4):526-528.
    [2]
    Timoshenko S P,Goodier J N.Theory of Elasticity[M].New York:McGraw-Hill,1970.
    [3]
    Gregory R D. The traction boundary-value problem for the elastostatic semi-infinite strip-existence of solution, and completeness of the Papkovich-Fadle eigenfunctions[J].Journal of Elasticity,1980,10(3):295-327. doi: 10.1007/BF00127452
    [4]
    Gregory R D, Gladwell I. The cantilever beam under tension, bending or flexure at infinity[J].Journal of Elasticity,1982,12(4):317-343. doi: 10.1007/BF00042208
    [5]
    Gregory R D, Wan F Y M.Decaying states of plane strain in a semi-infinite strip and boundary conditions for plate theory[J].Journal of Elasticity,1984,14(1):27-64. doi: 10.1007/BF00041081
    [6]
    Horgan C O, Simmonds J G.Asymptotic analysis of an end-loaded, transversely isotropic, elastic, semi-infinite strip weak in shear[J].International Journal of Solids and Structures,1991,27(15):1895-1914. doi: 10.1016/0020-7683(91)90184-H
    [7]
    Choi I, Horgan C O. Saint-Venants principle and end effects in anisotropic elasticity[J].ASME Journal of Applied Mechanics,1977,44(3):424-430. doi: 10.1115/1.3424095
    [8]
    Lin Y H, Wan F Y M.Bending and flexure of semi-infinite cantilevered orthotropic strips[J].Computers & Structures,1990,35(4):349-359.
    [9]
    Lin Y H, Wan F Y M. Semi-infinite orthotropic cantilevered strips and the foundations of plate theories[J].Studies in Applied Mathematics,1990,82(3):217-244.
    [10]
    Savoia M, Tullini N.Beam theory for strongly orthotropic materials[J].International Journal of Solids and Structures,1996,33(17):2459-2484. doi: 10.1016/0020-7683(95)00163-8
    [11]
    Leung A Y T, Su R K L. Mode-I crack problems by fractal 2-level finite-element methods[J].Engineering Fracture Mechanics,1994,48(6):847-856. doi: 10.1016/0013-7944(94)90191-0
    [12]
    Leung A Y T, Su R K L. Order of the singular stress fields of through-thickness cracks[J].International Journal of Fracture,1996,75(1):85-93. doi: 10.1007/BF00018527
    [13]
    Levinson M. A new rectangular beam theory[J].Journal of Sound and Vibration,1981,74(1):81-87. doi: 10.1016/0022-460X(81)90493-4
    [14]
    Heyliger P R, Reddy J N. A higher order beam finite element for bending and vibration problems[J].Journal of Sound and Vibration,1988,126(2):309-326. doi: 10.1016/0022-460X(88)90244-1
    [15]
    Leung A Y T. An improved 3rd-order beam theory[J].Journal of Sound and Vibration,1990,142(3):527-528. doi: 10.1016/0022-460X(90)90666-N
    [16]
    Spence D A. A class of biharmonic end-strip problems arising in elasticity and Stokes flow[J].IMA Journal of Applied Mathematics,1983,30(2):107-139. doi: 10.1093/imamat/30.2.107
    [17]
    姚伟岸,钟万勰.辛弹性力学[M].北京:高等教育出版社,2002.
    [19]
    Tullini N, Savoia M. Logarithmic stress singularities at clamped-free corners of a cantilever orthotropic beam under flexure[J].Composite Structures,1995,32(1/4):659-666. doi: 10.1016/0263-8223(95)00062-3
    [20]
    Leung A Y T, Xu X S, Gu Q,et al.The boundary layer phenomena in two-dimensional transversely isotropic piezoelectric media by exact symplectic expansion[J].International Journal for Numerical Methods in Engineering,2007,69(11):2381-2408. doi: 10.1002/nme.1855
    [22]
    Zhong W X, Lin J H, Zhu J P. Computation of gyroscopic systems and symplectic eigensolutions of skew-symmetrical matrices[J].Computers & Structures,1994,52(5):999-1009.
    [23]
    Zhong W X, Williams F W. Physical interpretation of the symplectic orthogonality of the eigensolutions of a Hamiltonian or symplectic matrix[J].Computers & Structures,1993,49(4):749-750.
    [24]
    Zhong W X, Williams F W. On the direct solution of wave-propagation for repetitive structures[J].Journal of Sounds and Vibrations,1995,181(3):485-501. doi: 10.1006/jsvi.1995.0153
    [25]
    Xu X S, Zhong W X, Zhang H W. The Saint-Venant problem and principle in elasticity[J].International Journal of Solids and Structures,1997,34(22):2815-2827. doi: 10.1016/S0020-7683(96)00198-9
    [26]
    Zhang H W, Zhong W X, Li Y P. Stress singularity analysis at crack tip on bi-material interfaces based on Hamiltonian principle[J].Acta Mechanica Solida Sinica,1996,9(2):124-138.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2998) PDF downloads(600) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return