Citation: | JIAO Jian-jun, CHEN Lan-sun. Delayed Stage-Structured Predator-Prey Model With Impulsive Perturbations on Predator and Chemical Control on Prey[J]. Applied Mathematics and Mechanics, 2007, 28(12): 1502-1512. |
[1] |
Barclay H J. Models for pest control using predator release, habitat management and pesticide release in combineation[J].J Appl Ecol,1982,19(2):337-348. doi: 10.2307/2403471
|
[2] |
Paneyya J C. A mathematical model of periodically pulse chemotherapy: tumor recurrence and metastasis in a competition environment[J].Bull Math Biol,1996,58(3):425-447. doi: 10.1007/BF02460591
|
[3] |
d′Onofrio A. Stability properties of pulse vaccination strategy in SEIR epidemic model[J].Math Biol,2002,179(1):57-72.
|
[4] |
Roberts M G, Kao R R.The dynamics of an infectious disease in a population with birth pulse[J].Math Biol,2002,149:23-36.
|
[5] |
Hethcote H. The mathematics of infectious disease[J].SIAM Review,2002,42(4):599-653.
|
[6] |
DeBach P.Biological Control of Insect Pests and Weeds[M].New York: Rheinhold, 1964.
|
[7] |
DeBach P, Rosen D. Biological Control by Natural Enemies[M]. 2nd ed. Cambridge: Cambridge University Press,1991.
|
[8] |
Freedman H J. Graphical stability, enrichment, and pest control by a natural enemy[J].Math Biosci,1976,31(3/4):207-225. doi: 10.1016/0025-5564(76)90080-8
|
[9] |
Grasman J, Van Herwaarden O A,et al.A two-component model of host-parasitoid interactions: determination of the size of inundative releases of parasitoids in biological pest control[J].Math Biosci,2001,169(2):207-216. doi: 10.1016/S0025-5564(00)00051-1
|
[10] |
Caltagirone L E,Doutt R L. Global behavior of an SEIRS epidemic model with delays,the history of the vedalia beetle importation to California and its impact on the development of biological control[J].Ann Rev Entomol,1989,34:1-16. doi: 10.1146/annurev.en.34.010189.000245
|
[11] |
Freedman H I,Gopalsamy K. Global stability in time-delayed single species dynamics[J].Bull Math Biol,1986,48(5/6):485-492.
|
[12] |
Zaghrout A A S, Attalah S H. Analysis of a model of stage-structured population dynamics growth with time state-dependent time delay[J].Appl Math Comput,1996,77(2):185-194. doi: 10.1016/S0096-3003(95)00212-X
|
[13] |
Aiello W G, Freedman H I. A time-delay model of single-species growth with stage-structure[J].Math Biosci,1990,101(2):139-153. doi: 10.1016/0025-5564(90)90019-U
|
[14] |
Aiello W G.The existence of nonoscillatory solutions to a generalized, nonautonomous,delay logistic equation[J].J Math Anal Appl,1990,149(1):114-123. doi: 10.1016/0022-247X(90)90289-R
|
[15] |
Rosen G.Time delays produced by essential nonlinearity in population growth models[J].Bull Math Biol,1987,49(2):253-255.
|
[16] |
Wangersky P J,Cunningham W J. On time large equations of growth[J].Proc Nat Acad Sci USA,1956,42(9):699-702. doi: 10.1073/pnas.42.9.699
|
[17] |
Fisher M E, Goh B S. Stability results for delay-recruitment models in population dynamics[J].J Math Biol,1984,19:117.
|
[18] |
Wang W. Global behavior of an SEIRS epidemic model with delays[J].Appl Math Letters,2002,15(4):423-428. doi: 10.1016/S0893-9659(01)00153-7
|
[19] |
Xiao Y N, Chen L S. A ratio-depengent predator-prey model with disease in the prey[J].Appl Math Comput,2002,131(2/3):397-414. doi: 10.1016/S0096-3003(01)00156-4
|
[20] |
Xiao Y N, Chen L S.An SIS epidemic model with stage structure and a delay[J].Acta Math Appl,English Series,2002,18(4):607-618. doi: 10.1007/s102550200063
|
[21] |
Xiao Y N, Chen L S,Bosh F V D. Dynamical behavior for stage-structured SIR infectious disease model[J].Nonlinear Analysis:RWA,2002,3(2):175-190. doi: 10.1016/S1468-1218(01)00021-9
|
[22] |
Xiao Y N, Chen L S.On an SIS epidemic model with stage-structure[J].J System Science and Complexity,2003,16(2):275-288.
|
[23] |
Lu Z H, Gang S J,Chen L S. Analysis of an SI epidemic with nonlinear transmission and stage structure[J].Acta Math Science,2003,23(4):440-446.
|
[24] |
Aiello W G, Freedman H I, Wu J. Analysis of a model representing stage-structured population growth with state dependent time delay[J].SIAM, J Appl Math,1992,52(3):855-869. doi: 10.1137/0152048
|
[25] |
Murray J D.Mathematical Biology[M].Berlin, Heidelberg, New York: Springer-Verlag, 1989.
|
[26] |
YANG Kuang. Delay Differential Equation With Application in Population Dynamics[M]. N Y: Academic Press, 1987,67-70.
|
[27] |
Cull P. Global stability for population models[J].Bull Math Biol,1981,43(1):47-58.
|
[28] |
LIU Xian-ning,CHEN Lan-sun. Compex dynamics of Holling type II Lotka-Volterra predator-prey system with impulsive perturbations on the predator[J].Chaos, Soliton and Fractals,2003,16(2):311-320. doi: 10.1016/S0960-0779(02)00408-3
|
[29] |
Lakshmikantham V, Bainov D D, Simeonov P.Theory of Impulsive Differential Equations[M].Singapor: World Scientific, 1989.
|
[30] |
Bainov D, Simeonov P.Impulsive Differential Equations: Periodic Solutions and Applications[M].England:Longman,1993.
|