D. P. Acharya, Indrajit Roy, P. K. Biswas. Vibration of an Infinite Inhomogeneous Trasversely Isotropic Viscoelastic Medium With a Cylindrical Hole[J]. Applied Mathematics and Mechanics, 2008, 29(3): 331-341.
Citation: D. P. Acharya, Indrajit Roy, P. K. Biswas. Vibration of an Infinite Inhomogeneous Trasversely Isotropic Viscoelastic Medium With a Cylindrical Hole[J]. Applied Mathematics and Mechanics, 2008, 29(3): 331-341.

Vibration of an Infinite Inhomogeneous Trasversely Isotropic Viscoelastic Medium With a Cylindrical Hole

  • Received Date: 2007-06-01
  • Rev Recd Date: 2007-12-28
  • Publish Date: 2008-03-15
  • The influences of higher order viscoela sticity and the inhomo geneities of the transversely isotropic elastic parameters on the disturbances in an infinite medium, caused by the presence of a transient radial force or twist on the surface of a cylindrical hole with circular cross section are investigated. Following Voigt's model for higher order viscoelasticity the nonvanishing stress components valid for a transversely isotropic and higher or derviscoelastic solid medium were deduced in terms of radial displacement component. Considering the power law variation of elastic and viscoelastic parameters, the stress equation of motion was developed. Solving this equation under suitable boundary conditions due to transient forces and twists radial displacement and relevant stress components were found out in terms of modified Bessel functions. The problem for the presence of transient radial force was numerically analysed. Modulations of displacement and stresses due to different order of viscoelasticity and inhomogeneity were graphically depicted. The numerical study of the disturbance caused by the presence of twist on the surface may be similarly done and is not pursued.
  • loading
  • [1]
    Flugge W.Viscoelasticity[M].London:Blasdell Publishing Co,1967.
    [2]
    Ezzat M A. Fundamental solution in generalized magneto thermoelasticity with two relaxation times for perfect conductor cylindrical region[J].Internat J Engrg Sci,2004,42(13/14):1503-1519. doi: 10.1016/j.ijengsci.2003.09.013
    [3]
    Bullen K E.An Introduction to Theory of Seismology[M].Cambridge: Cambridge University Press,1963.
    [4]
    Nowacki W.Dynamics of Elastic System[M].London: Chapman and Hall,1963.
    [5]
    约塞夫·H·M. 带球形空腔的广义热弹性无限大材料的弹性模量和传热系数与材料参考温度的相关性[J].应用数学和力学,2005,26(4):431-436.
    [6]
    Sengupta P R, De N, Kar M,et al.Rotatory vibration of sphere of higher order viscoelastic solid[J].Internat J Math Math Sci,1994,17(4):799-806. doi: 10.1155/S0161171294001110
    [7]
    Biswas P K, Sengupta P R.Torsional vibration of a non-homogeneous viscoelastic circular cylinder involving strain and stress rate of higher order[J].Acta Ciencia Indica,1991,17M(4):747-754.
    [8]
    Biswas P K, Sengupta P R.Disturbances in an infinite visco-elastic medium by transient radial forces and twist on the surface of a cylindrical hole considering rate of stress and rate of strain of higher order[J].Indian J Theo Phys,1989,37(1):61-70.
    [9]
    Das T K, Sengupta P R.Effect of damping on the torsional vibration of a homogeneous viscoelastic circular cylinder including strain rate stress rate[J].Acta Ciencia Indica,1991,17M(2):271-280.
    [10]
    Bhattacharya S,Sengupta P R. Disturbances in a general viscoelastic medium due to impulsive forces on a spherical cavity[J].Gerlands Beitr Geophysik, Leipzig,1978,87Ⅰ(8):57-62.
    [11]
    Biswas P K, Das T K. Propagation of waves in a higher order infinite visco-elastic medium by transient radial forces and twist on the surface of a cylinder[J].Acta Ciencia Indica,1991,17M(3):457-462.
    [12]
    Ghosh N C, Sengupta S. Radial deformation of a linearly varying non-homogeneous spherically anisotropic elastic spherical nodule with concentric spherical inclusion[J].Bull Calcutta Math Soc,1997,89(2):115-126.
    [13]
    Gaikwad M N,Deshmukh K C. Thermal stresses in anisotropic cylinder[J].Bull Calcutta Math Soc,2004,96(6):447-452.
    [14]
    Mukherjee J.Radial vibration of an inhomogeneous aeolotropic cylindrical shell[J].Indian J Mech Maths,1969,7(2):76-82.
    [15]
    Mondal A K, Sengupta S.Twisting of a hollow circular cylinder of cylindrically aeolotropic non-homogeneous material[J].J Bihar Math Soc,1999,19(1):41-50.
    [16]
    Voigt W. Theortische student über die elasticitatsverhalinisse krystalle [J].Abh Ges Wiss Goettingen,1887,34.
    [17]
    Mukherjee J.The disturbances in an infinite inhomogeneous medium due to transient forces and twists on the surface of a buried spherical source[J].Pure and Appl Geoph(PAGEOPH),1969,76(5):65-70. doi: 10.1007/BF00877837
    [18]
    Allam M N, Elsibai K A, AbouElregal A E. Thermal stresses in a harmonic field for an infinite body with a circular cylindrical hole without energy dissipation[J].Journal of Thermal Stresses,2002,25(1):57-67. doi: 10.1080/014957302753305871
    [19]
    Mukhopadhyay S.A problem on thermoelastic interactions without energy dissipation in an unbounded body with a spherical cavity subjected to harmonically varying stress[J].Bull Calcutta Math Soc,2007,99(3):261-270.
    [20]
    Arfken G B, Weber H J.Mathematical Methods for Physicists[M].Fifth Ed.New Delhi:Academic Press,2001,709-716.
    [21]
    Yang J, Shen H S.Nonlinear bending analysis of shear deformable functionally graded plates subjected to thermo-mechanical loads under various boundary conditions[J].Composites Part B: Engineering,2003,34(2):103-115. doi: 10.1016/S1359-8368(02)00083-5
    [22]
    Zhang N H, Wang M L. Thermoviscoelastic deformations of functionally graded thin plates[J].European Journal of Mechanics-A/Solids,2007,26(5):872-886. doi: 10.1016/j.euromechsol.2007.03.002
    [23]
    Ghosh M K. Stresses in a semi-infinite non-homogeneous elastic medium due to torsion[J].J Indian Acad Math,2003,25(2):371-381.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2971) PDF downloads(481) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return