LUO Zhi-xue, DU Ming-yin. Optimal Harvesting for an Age-Dependent n-Dimensional Food Chain Model[J]. Applied Mathematics and Mechanics, 2008, 29(5): 618-630.
Citation: LUO Zhi-xue, DU Ming-yin. Optimal Harvesting for an Age-Dependent n-Dimensional Food Chain Model[J]. Applied Mathematics and Mechanics, 2008, 29(5): 618-630.

Optimal Harvesting for an Age-Dependent n-Dimensional Food Chain Model

  • Received Date: 2007-09-02
  • Rev Recd Date: 2008-03-18
  • Publish Date: 2008-05-15
  • Optimal harvesting policy for an age-dependent n-dimensional food chain model is studied.The existence and uniqueness of non-negative solution of the system were proved using the fixed point theorem.By Mazur's theorem,the existence of optimal control strategy was demonstrated and optimality conditions were derived by means of normal cone.
  • loading
  • [1]
    Brokate M.Pontryagin's principle for control problems in age-dependent population dynamics[J].J Math Biol,1985,23:75-101. doi: 10.1007/BF00276559
    [2]
    Murphy L F,Smith S J.Optimal harvesting of an age-structured population[J].J Math Biol,1990,29:77-90.
    [3]
    Clark C W.Mathematical Bioeconomics: the Optimal Management of Renewable Resouces[M].2Ed.New York:John Wiley and Sons Inc,1990.
    [4]
    Busoni G,Matucci S.A problem of optimal harvesting policy in two-stage age-dependent population[J].Math Biosci,1997,143:1-33. doi: 10.1016/S0025-5564(97)00011-4
    [5]
    Anita S.Optimal harvesting for a nonlinear age-dependent population dynamics[J].J Math Anal Appl,1998,226:6-22. doi: 10.1006/jmaa.1998.6064
    [6]
    Anita S,Iannelli M,Kim M Y,et al.Optimal harvesting for periodic age-dependent population dynamics[J].SIAM J Appl Math,1998,58(5):1648-1666. doi: 10.1137/S0036139996301180
    [7]
    Anita S.Analysis and Control of Age-Dependent Population Dynamics[M].Dordrecht:Kluwer Academic Publishers,2000.
    [8]
    Albrecht F,Gatzke H,Haddad A,et al.On the control of certain interacting populations[J].J Math Anal Appl,1976,53:578-603. doi: 10.1016/0022-247X(76)90094-9
    [9]
    Lenhart S,Liang M,Protopopescu V.Optimal control of boundary habitat hostility for interacting species[J].Math Mech Appl Sci,1999,22:1061-1077. doi: 10.1002/(SICI)1099-1476(19990910)22:13<1061::AID-MMA70>3.0.CO;2-I
    [10]
    Crespo L G,Sun J Q.Optimal control of populations of competing species[J].Nonlinear Dynamics,2002,27:197-210. doi: 10.1023/A:1014258302180
    [11]
    MENG Xin-zhu,JIAO Jian-jun,CHEN Lan-sun.The dynamics of an age structured predator-prey model with disturbing pulse and time delays[J].Nonlinear Analysis: Real World Applications,2008,9(2):547-561. doi: 10.1016/j.nonrwa.2006.12.001
    [12]
    Chan W L,Guo B Z.Optimal birth control of population dynamics[J].J Math Anal Appl,1989,144:532-552. doi: 10.1016/0022-247X(89)90350-8
    [13]
    Webb G F.Theory of Nonlinear Age-dependent Population Dynamics[M].N Y:Marcel Dekker,1985.
    [14]
    Iannelli M.Mathematical Theory of Age-Structured Population Dynamics[M].Pisa:E Stampatori,1994.
    [15]
    Barbu V,Precupanu T.Convexity and Optimization in Banach Spaces[M].Dordrecht-Boston:D.Reidel Publishing Company,1986.
    [16]
    孟新柱,陈兰荪,宋治涛.一类新的含有垂直传染与脉冲免疫的时滞SEIR传染病模型的全局动力学行为[J].应用数学和力学,2007,28(9):1123-1134.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2651) PDF downloads(707) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return