LIU Yong, BI Qin-sheng, CHEN Yu-shu. Phase Synchronization Between Nonlinearly Coupled RL ssler Systems[J]. Applied Mathematics and Mechanics, 2008, 29(6): 631-638.
Citation: LIU Yong, BI Qin-sheng, CHEN Yu-shu. Phase Synchronization Between Nonlinearly Coupled RL ssler Systems[J]. Applied Mathematics and Mechanics, 2008, 29(6): 631-638.

Phase Synchronization Between Nonlinearly Coupled RL ssler Systems

  • Received Date: 2007-10-26
  • Rev Recd Date: 2008-04-14
  • Publish Date: 2008-06-15
  • Phase synchronization between nonlinearly coupled systems with 1:1 and 1:2 resonances is investigated. By introducing the conception of phase for a chaotic motion, it demonstrates that for the different internal resonances, with relatively small parameter epsilon, both differences between the mean frequencies of the two sub-oscillators approach zero, implying phase synchronization can be achieved for weak interaction between the two oscillators. With the increase of the coupling strength, fluctuations of the frequency difference can be observed, and for the primary resonance, the amplitudes of the fluctuations of the difference seem much smaller compared with the case with frequency ratio 1:2, even with weak coupling strength. Unlike the enhance effect on the synchronization for linear coupling, the increase of nonlinear coupling strength results in the transition from phase synchronization to non-synchronized state. Further investigation reveals that the states from phase synchronization to non-synchronization are related to the critical changes of the Liapunov exponents, which can also be explained by the diffuse clouds.
  • loading
  • [1]
    Pecora L M, Caroll T L.Synchronization in chaotic systems[J].Physical Review Letter,1990,64(8):821-824. doi: 10.1103/PhysRevLett.64.821
    [2]
    Zhang S H, Shen K.Generalized synchronization of chaos in erbium-doped dual-ring lasers[J].Chinese Physics,2002,11(9): 894-899. doi: 10.1088/1009-1963/11/9/308
    [3]
    Zhi L, Si S J. Global synchronization of Chua’s chaotic delay network by using linear matrix inequality[J].Chinese Physics,2004,13(8):1221-1225. doi: 10.1088/1009-1963/13/8/007
    [4]
    Kiss I Z, Zhai Y M, Hudson J L. Collective dynamics of chaotic chemical oscillators and law of large numbers[J].Physical Review Letter,2002,88(23):238301. doi: 10.1103/PhysRevLett.88.238301
    [5]
    Shi X, Lu Q S. Firing patterns and complete synchronization of coupled Hindmarsh-Rose neurons[J].Chinese Physics,2005,14(1):77-85. doi: 10.1088/1009-1963/14/1/016
    [6]
    Wang J, Deng B, Tsang K M. Chaotic synchronization of neurons coupled with gap junction under external electrical stimulation[J].Chaos, Soliton & Fractals,2004,22(2):469-476.
    [7]
    Shuai J W, Durand D M. Phase synchronization in two coupled chaotic neurons[J].Physics Letters A,1999,264(4):289-297. doi: 10.1016/S0375-9601(99)00816-6
    [8]
    Samuel B. Stability analysis for the synchronization of chaotic systems with different order: application to secure communication[J].Physics Letters A,2004,326(1):102-113. doi: 10.1016/j.physleta.2004.04.004
    [9]
    Kim C M, Kye W H, Rim S,et al.Communication key using delay times in time-delayed chaos synchronization[J].Physics Letters A,2004,333(3/4):235-240. doi: 10.1016/j.physleta.2004.09.080
    [10]
    Gonzalez-Miranda J M. Communications by synchronization of spatially symmetric chaotic systems[J].Physics Letters A,1999,251(2):115-120. doi: 10.1016/S0375-9601(98)00889-5
    [11]
    Rulkov N F, Sushchik M M, Tsimring L S,et al.Generalized synchronization of chaos in directionally coupled chaotic systems[J].Physical Review E,1995,51(2): 980-994. doi: 10.1103/PhysRevE.51.980
    [12]
    Winterhalder M, Schelter B, Kurths J,et al.Sensitivity and specificity of coherence and phase synchronization analysis[J].Physics Letters A,2006,356(1):26-34. doi: 10.1016/j.physleta.2006.03.018
    [13]
    Li X. Phase synchronization in complex networks with decayed long-range interactions[J].Physica D: Nonlinear Phenomena,2006,223(2):242-247. doi: 10.1016/j.physd.2006.09.026
    [14]
    Alatriste F R, Mateos J L. Phase synchronization in tilted deterministic ratchets[J].Physica A: Statistical Mechanics and Its Applications,2006,372(2):263-271. doi: 10.1016/j.physa.2006.08.038
    [15]
    Gabor D. Theory of communication[J].J IEE (London),Part Ⅲ,1946,93(26):429-457.
    [16]
    Pikovsky A, Roseblum M G, Osipov G,et al. Phase synronization of chaotic oscillators by external driving[J].Physica D,1997,104(3):219-238. doi: 10.1016/S0167-2789(96)00301-6
    [17]
    Pikovsky A. Phase synronization of chaotic oscillators by a periodic external field[J].Journal of Communications Technology Electronics,1985,30(3):1970-1974.
    [18]
    Pikovsky A, Roseblum M G, Osipov G,et al.Phase synronization in regular and chaotic systems[J].Journal of Bifurcation and Chaos,2000,10(10):2291-2305.
    [19]
    Landa P S, Roseblum M G. Synchronization and chaotization of oscillations in coupled self-oscillating systems[J].Application Mechanics Review,1993,46(7):414-426. doi: 10.1115/1.3120370
    [20]
    Zhang Z G, Hu G.Generalized synchronization versus phase synchronization[J].Physical Review E,2000,62(6):7882-7885. doi: 10.1103/PhysRevE.62.7882
    [21]
    Lv J H, Zhou T S, Zhang S C.Chaos synchronization between linearly coupled chaotic systems[J].Chaos, Solitons & Fractals,2002,14(4):529-541.
    [22]
    Landa P S, Perminov S M.Synchronization of the chaotic oscillations in the Mackey-Glass system[J].Radiofizika,1987,30(3):437-439.
    [23]
    Coombes S. Phase locking in the networks of synaptically coupled McKean relaxation oscillators[J].Physica D,2001,160(3):173-188. doi: 10.1016/S0167-2789(01)00352-9
    [24]
    Palus M. Detecting phase synchronization in noisy systems[J].Physics Letters A,1997,235(4):341-351. doi: 10.1016/S0375-9601(97)00635-X
    [25]
    Bi Q. Bifurcation of traveling wave solutions from KdV equation to Camassa-Holm equation[J].Physics Letters A,2005,344(5):361-368. doi: 10.1016/j.physleta.2005.06.096
    [26]
    Bi Q. Dynamical analysis of two coupled parametrically excited Van del Pol oscillators[J].Journal of Non-Linear Mechanics,2004,39(1) :33-54. doi: 10.1016/S0020-7462(02)00126-9
    [27]
    Bi Q. Dynamics and modulated chaos of coupled oscillators[J].Journal of Bifurcation and Chaos,2004,14(1):337-346. doi: 10.1142/S0218127404009041
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2625) PDF downloads(546) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return