HU Wei-peng, DENG Zi-chen. Multi-Symplectic Method for Generalized Boussinesq Equation[J]. Applied Mathematics and Mechanics, 2008, 29(7): 839-845.
Citation: HU Wei-peng, DENG Zi-chen. Multi-Symplectic Method for Generalized Boussinesq Equation[J]. Applied Mathematics and Mechanics, 2008, 29(7): 839-845.

Multi-Symplectic Method for Generalized Boussinesq Equation

  • Received Date: 2008-01-16
  • Rev Recd Date: 2008-05-09
  • Publish Date: 2008-07-15
  • Generalized Boussinesq equation,representing a group of important nonlinear equations, possesses many interesting properties.The multi-symplectic formulations of which in Hamilton space were introduced.Then an implicit multi-symplectic scheme equivalent to the multi-symplectic Box scheme was constructed to solve the partial differential equations(PDEs) that were derived from the generalized Boussinesq equation.The numerical experiments on the soliton solutions of the generalized Boussinesq equation were also reported.Finally,the results of which show that the multi-symplectic method is an efficient algorithm with excellent long-time numerical behaviors for nonlinear partial differential equation.
  • loading
  • [1]
    Bridge T J,Reich S.Multi-symplectic integrators: numerical schemes for Hamiltonian PDEs that conserve symplecticity[J].Physics Letters A,2001,284(4/5):184-193. doi: 10.1016/S0375-9601(01)00294-8
    [2]
    Moore B E, Reich S. Multi-symplectic integration methods for Hamiltonian PDEs[J].Future Generation Computer Systems,2003,19(3):395-402. doi: 10.1016/S0167-739X(02)00166-8
    [3]
    Bridges T J. Multi-symplectic structures and wave propagation[J].Mathematical Proceedings of the Cambridge Philosophical Society,1997,121(1):147-190. doi: 10.1017/S0305004196001429
    [4]
    Reich S. Multi-symplectic Runge-Kutta collocation methods for Hamiltonian wave equations[J].Computational Physics,2000,157(2):473-499. doi: 10.1006/jcph.1999.6372
    [5]
    Zhao P F, Qin M Z. Multisymplectic geometry and multisymplectic preissmann scheme for the KdV equation[J].Journal of Physics, A,Mathematical and General,2000,33(18):3613-3626. doi: 10.1088/0305-4470/33/18/308
    [6]
    Islas A L, Schober C M. Multi-symplectic methods for generalized Schrdinger equations[J].Future Generation Computer Systems,2003,19(3):403-413. doi: 10.1016/S0167-739X(02)00167-X
    [7]
    胡伟鹏,邓子辰, 李文成.膜自由振动的多辛方法[J].应用数学和力学,2007,28(9):1054-1062.
    [8]
    HUANG Lang-yang, ZENG Wen-ping, QIN Meng-zhao. A new multi-symplectic scheme for nonlinear “good” Boussinesq equation[J].Journal of Computational Mathematics,2003,21(6):703-714.
    [9]
    曾文平,黄浪扬,秦孟兆.“Good”Boussinesq方程的多辛算法[J].应用数学和力学,2002,23(7):743-748.
    [10]
    Hirota R. Exact envelope-soliton solutions of a nonlinear wave[J].Journal of Mathematical Physics,1973,14(7):805-809. doi: 10.1063/1.1666399
    [11]
    Hirota R. Exact N-soliton solutions of the wave equation of long waves in shallow-water and in nonlinear lattices[J].Journal of Mathematical Physics,1973,14(7):810-814. doi: 10.1063/1.1666400
    [12]
    Nimmo J J C,Freeman N C.A method of obtaining the N-soliton solutions of the Boussinesq equation in terms of a Wronskian[J].Physics Letters A,1983,95(1):4-6. doi: 10.1016/0375-9601(83)90765-X
    [13]
    Zhang Y, Chen D Y. A modified Bcklund transformation and multi-soliton solution for the Boussinesq equation[J].Chaos, Solitons & Fractals,2005,23(1):175-181.
    [14]
    Kaptsov O V. Construction of exact solutions of the Boussinesq equation[J].Journal of Applied Mechanics and Theoretical Physics,1998,39(3):389-392. doi: 10.1007/BF02468120
    [15]
    Wazwaz Abdul-Majid.Construction of soliton solutions and periodic solutions of the Boussinesq equation by the modified decomposition method[J].Chaos, Solitons & Fractals,2001,12(8):1549-1556.
    [16]
    Yan Z Y, Bluman G. New compacton soliton solutions and solitary patterns solutions of nonlinearly dispersive Boussinesq equations[J].Computer Physics Communications,2002,149(1):11-18. doi: 10.1016/S0010-4655(02)00587-8
    [17]
    Wazwaz Abdul-Majid.Multiple-soliton solutions for the Boussinesq equation[J].Applied Mathematics and Computation,2007,192(2):479-486. doi: 10.1016/j.amc.2007.03.023
    [18]
    El-Zoheiry H. Numerical investigation for the solitary waves interaction of the “good” Boussinesq equation[J].Applied Numerical Mathematics,2003,45(2/3):161-173. doi: 10.1016/S0168-9274(02)00187-3
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3171) PDF downloads(570) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return