HU Yu-da, LI Jing. Magneto-Elastic Combination Resonances Analysis of Current-Conducting Thin Plate[J]. Applied Mathematics and Mechanics, 2008, 29(8): 954-966.
Citation: HU Yu-da, LI Jing. Magneto-Elastic Combination Resonances Analysis of Current-Conducting Thin Plate[J]. Applied Mathematics and Mechanics, 2008, 29(8): 954-966.

Magneto-Elastic Combination Resonances Analysis of Current-Conducting Thin Plate

  • Received Date: 2007-09-04
  • Rev Recd Date: 2008-07-15
  • Publish Date: 2008-08-15
  • Based on Maxwell the nonlinear magneto-elastic vibration equations of a thin plate were derived.The electrodynamic equations and of electromagnetic forces were also derived.In addition,the magneto-elastic combination resonances and stabilities of the thin beam-plate subjected to mechanical loadings in a constant magnetic filed were studied.by means of the Galerldn Method,the corresponding nonlinear vibration differential equatios were derived.The amplitude frequency response equation of the system in steady motion was obtained by the method of multiple scales.The exatation condition of combination resonances was analyzed.Based on the Liapunov stability theory,the stabilities of steady solutions were analyzed and the critical conditions of stability were also obtained.Through the numerical calculation,the curves which resonance-amplifades changing with detuning parameters,excitation amplitudes and magnetic intensity in the fast and the second order modality were obtained respectively.The time history response plots,the phase charts,the Poincare mapping charts and the spectrum plots of vibraiaons were also obtained.The effeet of electso-mangetic and mechanical parameters for the stabilities of solutions and the bifurcattion are further analyzed.Some complex dynamic performances such as the period-doubling motion and the quasi-period motion were discussed.
  • loading
  • [1]
    Pao Y H, Yeh C S. A linear theory for soft ferromagnetic elastic bodies[J].International Journal of Engineering Science,1973,11(4):415-436. doi: 10.1016/0020-7225(73)90059-1
    [2]
    Moon F C, Pao Y H.Vibration and dynamic instability of a beam-plate in a transverse magnetic field[J].Journal of Applied Mechanics,1969,36(2):141-149. doi: 10.1115/1.3564576
    [3]
    Moon F C.Magneto-Solid Mechanics[M].New York: John Wiley and Sons,1984.
    [4]
    Lu Q S, To C W S, Huang K L.Dynamic stability and bifurcation of an alternating load and magnetic field excited magnetoelastic beam[J].Journal of Sound and Vibration,1995,181(5):873-891. doi: 10.1006/jsvi.1995.0175
    [5]
    Hai W, Duan Y, Pan X. An analytical study for controlling unstable periodic motion in magneto-elastic chaos[J].Physics Letter A,1997,234(3):198-204. doi: 10.1016/S0375-9601(97)00501-X
    [6]
    Thompson R C A, Mullin T. Routes to chaos in a magneto-elastic beam[J].Chaos Solitons and Fractals,1997,8(4):681-697. doi: 10.1016/S0960-0779(96)00113-0
    [7]
    Wu G Y. The analysis of dynamic instability on the large amplitude vibrations of a beam with transverse magnetic fields and thermal loads[J].Journal of Sound and Vibration,2007,302(1/2):167-177. doi: 10.1016/j.jsv.2006.11.012
    [8]
    Wang X Z, Lee J S, Zheng X J.Magneto-thermo-elastic instability of ferromagnetic plates in thermal and magnetic fields[J].International Journal of Solids and Structures,2003,40(22):6125-6142. doi: 10.1016/S0020-7683(03)00297-X
    [9]
    Амбарцумян С А, Багдасарян Г Е, Белубекян М В.Магнитоупругость Тонких Оболочек и Пластин[M].Москва: Наука, 1977.
    [10]
    Мольченко Л В.Магнитоупругость Нелинейных Токонесущих Оболочек[M].Киев: Выща Школа Наука,1989.
    [11]
    Hasanyan D J, Librescu L, Ambur D R. Bucking and postbuckling of magnetoelastic flat plates carrying an electric current[J].International Journal of Solids and Structures,2006,43(16):4971-4996. doi: 10.1016/j.ijsolstr.2005.04.028
    [12]
    Zheng X J, Zhang J P, Zhou Y H. Dynamic stability of a cantilever conductive plate in transverse impulsive magnetic field[J].International Journal of Solids and Structures,2005,42(8):2417-2430. doi: 10.1016/j.ijsolstr.2004.09.016
    [13]
    胡宇达, 邱家俊,塔娜.压板松动时大型发电机端部绕组的主共振与分岔[J].应用数学和力学, 2005,26(4):465-473.
    [14]
    胡宇达.传导薄板在磁场环境中的非线性磁弹性振动问题[J].工程力学,2001,18(4):89-94.
    [15]
    HU Yu-da, DU Guo-jun, LI Jing. Nonlinear magnetoelastic vibration analysis of current-conducting thin plate in magnetic field[A].In:CHIEN Wei-zang,Ed.Proceedings of Fifth International Conference on Nonlinear Mechanics[C].Shanghai:Shanghai University Press,2007, 631-636.
    [16]
    Nayfeh A H, Mook D T.Nonlinear Oscillations[M].New York:John Wiley & Sons, 1979.
    [17]
    刘延柱,陈立群.非线性振动[M].北京:高等教育出版社,2001.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3212) PDF downloads(623) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return