ZHANG Xiao-hua, OUYANG Jie, WANG Jian-yu. Stabilization Meshless Method for Convection Dominated Problems[J]. Applied Mathematics and Mechanics, 2008, 29(8): 967-975.
Citation: ZHANG Xiao-hua, OUYANG Jie, WANG Jian-yu. Stabilization Meshless Method for Convection Dominated Problems[J]. Applied Mathematics and Mechanics, 2008, 29(8): 967-975.

Stabilization Meshless Method for Convection Dominated Problems

  • Received Date: 2007-09-20
  • Rev Recd Date: 2008-06-26
  • Publish Date: 2008-08-15
  • It is well luiown that the standard Galerlan is not ideally suited to deal with the spatial discretization of convection-dominated problems.Several techniques were proposed to overcome the instability issues in convection-dominated problems simulated by meshless method.These stable techniques included: the nodal refinement,the enlazgement of nodal influence domain,the full upwind meshless technique and the adaptive upwind meshless technique.Meanwile,these stable techniques were applied to RPIM to solve one and two-dimensional convection-diffusion equations.Numerical resalts for example problems show that these techniques are effective to solve convection-dominated preblems,and the adaptive upwind meshless technique is the most effective method of all.
  • loading
  • [1]
    Donea J,Huerta A.Finite Element Methods for Flow Problems[M].Chichester:Wiley,2003.
    [2]
    Monaghan J J.An introduction to SPH[J].Computer Physics Communications,1988,48(1):89-96. doi: 10.1016/0010-4655(88)90026-4
    [3]
    Liu W K, Jun S, Zhang Y F.Reproducing kernel particle methods[J].International Journal for Numerical Methods in Fluids,1995,20(8/9):1081-1106. doi: 10.1002/fld.1650200824
    [4]
    Liu W K, Jun S, Sihling D T,et al.Multiresolution reproducing kernel particle method for computational fluid dynamics[J].International Journal for Numerical Methods in Fluids,1997,24(12):1391-1415. doi: 10.1002/(SICI)1097-0363(199706)24:12<1391::AID-FLD566>3.0.CO;2-2
    [5]
    Liu G R, Gu Y T.An Introduction to Meshfree Methods and Their Programming[M].Dordrecht: Springer,2005.
    [6]
    Belytschko T, Lu Y Y, Gu L. Element-free Galerkin methods[J].International Journal for Numerical Methods in Engineering,1994,37(2):229-256. doi: 10.1002/nme.1620370205
    [7]
    Oate E, Idelsohn S, Zienkiewicz O C.A finite point method in computational mechanics: Application to convections to transport and fluid flow[J].International Journal for Numerical Methods in Engineering,1996,39(22):3839-3866. doi: 10.1002/(SICI)1097-0207(19961130)39:22<3839::AID-NME27>3.0.CO;2-R
    [8]
    Oate E,Idelsohn S, Zienkiewicz O C,et al.A stabilized finite point method for analysis of fluid mechanics problems[J].Computer Methods in Applied Mechanics and Engineering,1996,139(1/4):315-346. doi: 10.1016/S0045-7825(96)01088-2
    [9]
    Oate E,Idelsohn S.A mesh-free finite point method for advective-diffusive transport and fluid flow problems[J].Computational Mechanics,1998,21(4/5):283-292. doi: 10.1007/s004660050304
    [10]
    Lin H, Atluri S N. The meshless local Petrov-Galerkin (MLPG) method for convection-dynamics[J].Computer Modeling in Engineering and Sciences,2000,1(2):45-60.
    [11]
    张小华,欧阳洁.线性定常对流占优对流扩散问题的无网格解法[J].力学季刊,2006,27(2):220-226.
    [12]
    张雄, 刘岩. 无网格法[M].北京:清华大学出版社,2004.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2809) PDF downloads(779) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return