LI Wen-cheng, DENG Zi-chen. Adaptive Explicit Magnus Numerical Method for Nonlinear Dynamical Systems[J]. Applied Mathematics and Mechanics, 2008, 29(9): 1009-1016.
Citation: LI Wen-cheng, DENG Zi-chen. Adaptive Explicit Magnus Numerical Method for Nonlinear Dynamical Systems[J]. Applied Mathematics and Mechanics, 2008, 29(9): 1009-1016.

Adaptive Explicit Magnus Numerical Method for Nonlinear Dynamical Systems

  • Received Date: 2008-01-24
  • Rev Recd Date: 2008-07-25
  • Publish Date: 2008-09-15
  • Based on the new explicit Magnus expansion developed for nonlinear equation defined on matrix Lie group, an efficient numerical method was suggested for nonlinear dynamical system. To improve the computational efficiency, the integration step size can be controlled self adaptively. The validity and effectiveness of the method were proved by application to several nonlinear dynamical systems, including Duffing system, Van der Pol system with strong stiffness, and nonlinear Hamiltonian pendulum system.
  • loading
  • [1]
    Magnus W. On the exponential solution of differential equations for a linear operator[J].Commun Pure Appl Math,1954,7(4):649-673. doi: 10.1002/cpa.3160070404
    [2]
    Iserles A, Nrsett S P. On the solution of linear differential equations in Lie groups[J].Phil Trans Royal Society A,1999,357(1754):983-1020. doi: 10.1098/rsta.1999.0362
    [3]
    Hairer E, Lubich C, Wanner G.Geometric Numerical Integration[M].Berlin: Springer Verlag,2006.
    [4]
    Iserles A, Munthe-Kaas H Z, Nrsett S P,et al.Lie group methods[J].Acta Numerica,2000,9:215-365. doi: 10.1017/S0962492900002154
    [5]
    Blanes S, Casas F, Ros J. High order optimized geometric integrators for linear differential equations[J].BIT Numerical Mathematics,2002,42(2):262-284. doi: 10.1023/A:1021942823832
    [6]
    Zanna A. Collocation and relaxed collocation for the Fer and the Magnus expansion[J].SIAM J Numer Anal,1999,36(4):1145-1182. doi: 10.1137/S0036142997326616
    [7]
    Blanes S, Moan P C.Splitting methods for non-autonomous Hamiltonian equations[J].J Comput Phys,2001,170(1):205-230. doi: 10.1006/jcph.2001.6733
    [8]
    Zhang S, Deng Z. A simple and efficient fourth-order integrator for nonlinear dynamic system[J].Mech Res Commun,2004,31(2):221-228. doi: 10.1016/j.mechrescom.2003.10.004
    [9]
    Zhang S, Deng Z. Geometric integration for solving nonlinear dynamic systems based on Magnus series and Fer expansions[J].Progress in Natural Science,2005,14(9):19-30.
    [10]
    Casas F, Iserles A.Explicit Magnus expansions for nonlinear equations[J].J Phys A: Math Gen,2006,39(19):5445-5462. doi: 10.1088/0305-4470/39/19/S07
    [11]
    Iserles A, Marthinsen A,Nrsett S P.On the implementation of the method of Magnus series for linear differential equations[J].BIT Numerical Mathematics,1999,39(2):281-304. doi: 10.1023/A:1022393913721
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3372) PDF downloads(543) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return