SHEN Shou-feng, ZHANG Jun. Homoclinic Orbits for Some (2+1)-Dimensional Nonlinear SchrLdinger-Like Equations[J]. Applied Mathematics and Mechanics, 2008, 29(10): 1254-1260.
Citation: SHEN Shou-feng, ZHANG Jun. Homoclinic Orbits for Some (2+1)-Dimensional Nonlinear SchrLdinger-Like Equations[J]. Applied Mathematics and Mechanics, 2008, 29(10): 1254-1260.

Homoclinic Orbits for Some (2+1)-Dimensional Nonlinear SchrLdinger-Like Equations

  • Received Date: 2008-05-07
  • Rev Recd Date: 2008-09-05
  • Publish Date: 2008-10-15
  • Chaos is closely associated with homoclinic orbits in deterministic nonlinear dynamics. Analytic expressions of homoclinic orbits for some(2+1)-dimensional nonlinear SchrLdinge-rlike equations,which include the long wave-short wave resonance interaction equation,generalization of the Zakharov equation,Mel.nikov equation and g-SchrLdinger equation,are constructed based on Hirota's bilinear method.
  • loading
  • [1]
    Herbst B M,Ablowitz M J.Numerically induced chaos in the nonlinear Schrdinger equation[J].Physical Review Letters,1989,62(18):2065-2068. doi: 10.1103/PhysRevLett.62.2065
    [2]
    Ablowitz M J,Herbst B M.On homoclinic structure and numerically induced chaos for the nonlinear Schrdinger equation[J].Society for Industrial and Applied Mathematics,1990,50(2):339-351. doi: 10.1137/0150021
    [3]
    Hirota R.Direct methods in soliton theory[A].In:Bullough R K,Caudey E J,Eds.Solitons[C].Berlin:Springer,1980,157-176.
    [4]
    Ablowitz M J,Herbst B M.On the numerical solution of the Sine-Gordon equation—Ⅰ integrable discretizations and homoclinic manifolds[J].Journal of Computational Physics,1996,126(2):299-314. doi: 10.1006/jcph.1996.0139
    [5]
    Herbst B M,Ablowitz M J,Ryan E.Numerical homoclinic instabilities and the complex modified Korteweg-de Vries Equation[J].Computer Physics Communications,1991,65(1):137-142. doi: 10.1016/0010-4655(91)90165-H
    [6]
    Li Y G.Backlund transformations and homoclinic structures for the integrable discretization of the NLS equation[J].Physics Letters A,1992,163(3):181-187. doi: 10.1016/0375-9601(92)90405-B
    [7]
    HU Xin-biao,GUO Bo-lin,Tam H W.Homoclinic orbits for the coupled Schrdinger-Boussinesq equation and coupled Higgs equation[J]. Journal of the Physical Society of Japan,2003,72(1):189-190.
    [8]
    张隽,郭柏灵,沈守枫.Davey-Stewartson方程的同宿轨道[J].应用数学和力学,2005,26(2):127-129.
    [9]
    ZHANG Jun,GUO Bo-ling,SHEN Shou-feng.Homoclinic orbits of the doubly periodic Davey-Stewartson equation[J].Progress in Natural Science,2004,14(11):1031-1032. doi: 10.1080/10020070412331344761
    [10]
    Derek W C Lai,Kwok W Chow.‘Positon’ and ‘Dromion’solutions of the (2+1) dimensional long wave-short wave resonance interaction equations[J].Journal of the Physical Society of Japan,1999,68(6):1847-1853. doi: 10.1143/JPSJ.68.1847
    [11]
    Fokas A S.On the simplest integrable equation in 2+1[J].Inverse Problems,1994,10(2):L19-L22.
    [12]
    Radha R,Lakshmanan M.Localized coherent structures and integrability in a generalized (2+1)-dimensional nonlinear Schrdinger equation[J].Chaos, Solitons and Fractals,1997,8(1):17-25. doi: 10.1016/S0960-0779(96)00090-2
    [13]
    Mel'nikov V K.Reflection of waves in nonlinear integrable systems[J].Journal of Mathematical Physics,1987,28(2):2603-2609. doi: 10.1063/1.527752
    [14]
    Strachan I A B.Wave solutions of a (2+1)-dimensional generalization of the nonlinear Schrdinger equation[J].Inverse Problems,1992,8(5):L21-L28.
    [15]
    戴正德, 蒋慕容,李栋龙.戴维-斯特瓦尔松方程[M].北京:科学出版社,2007.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2201) PDF downloads(702) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return