A. M. Zenkour, K. A. Elsibai, D. S. Mashat. Elastic and Viscoelastic Solutions for Rotating Functionally Graded Hollow and Solid Cylinders[J]. Applied Mathematics and Mechanics, 2008, 29(12): 1457-1471.
Citation: A. M. Zenkour, K. A. Elsibai, D. S. Mashat. Elastic and Viscoelastic Solutions for Rotating Functionally Graded Hollow and Solid Cylinders[J]. Applied Mathematics and Mechanics, 2008, 29(12): 1457-1471.

Elastic and Viscoelastic Solutions for Rotating Functionally Graded Hollow and Solid Cylinders

  • Received Date: 2008-05-14
  • Rev Recd Date: 2008-07-15
  • Publish Date: 2008-12-15
  • Analytical solutions for rotating functionally graded hollow and solid long cylinders are developed. Young's modulus and material density of the cylinder are assumed to vary exponentially through the radial direction and Poisson's ratio was assumed to be constant.A unified governing equation was derived from the equilibrium equations,compatibility equation,deformation theory of elasticity and the stress-strain relationships.The governing second-order differential equation was solved in terms of a hypergeometric function for the elastic deformation of rotating functionally graded cylinders.Dependence of stresses in the cylinder on the inhomogeneous parameters,geometry and boundary conditions was examined and discussed.Proposed solution was validated by comparing the results for rotating functionally graded hollow and solid cylinders to the results for rotating homogeneous isotropic cylinders.In addition,a viscoelastic solution for the rotating viscoelastic cylinder was presented.Moreover,the dependence of stresses in hollow and solid cylinders on the time parameter was examined.
  • loading
  • [1]
    Koizumi M. The concept of FGM[J].Ceramic Trans Funct Grad Mater, 1993,34: 3-10.
    [2]
    Praveen G N, Reddy J N. Nonlinear transient thermoelastic analysis of functionally graded ceramic-metal plates[J].International Journal of Solids and Structures, 1998, 35(33): 4457-4476. doi: 10.1016/S0020-7683(97)00253-9
    [3]
    Reddy J N, Chin C D. Thermomechanical analysis of functionally graded cylinders and plates[J]. Journal of Thermal Stresses, 1998, 21(6):593-626. doi: 10.1080/01495739808956165
    [4]
    Loy C T, Lam K Y. Reddy J N. Vibration of functionally graded cylindrical shells[J].International Journal of Mechanical Science, 1999, 41(3): 309-324. doi: 10.1016/S0020-7403(98)00054-X
    [5]
    Reddy J N. Analysis of functionally graded plates[J].International Journal for Numerical Methods in Engineering, 2000,47(1/3): 663-684. doi: 10.1002/(SICI)1097-0207(20000110/30)47:1/3<663::AID-NME787>3.0.CO;2-8
    [6]
    Zenkour A M. Generalized shear deformation theory for bending analysis of functionally graded plates[J].Applied Mathematical Modelling, 2006, 30(1):67-84. doi: 10.1016/j.apm.2005.03.009
    [7]
    Zenkour A M. A comprehensive analysis of functionally graded sandwich plates—Part 1:Deflection and stresses[J].International Journal of Solids and Structures,2005,42(18/19):5224-5242. doi: 10.1016/j.ijsolstr.2005.02.015
    [8]
    Timoshenko S P, Goodier J N.Theory of Elasticity[M].3rd Ed. New York: McGraw-Hill, 1970.
    [9]
    Lekhnitskii S G.Theory of Elasticity of an Anisotropic Elastic Body[M].Moscow: Mir Publishers, 1981.
    [10]
    Kalam M A, Tauchert T R. Stresses in an orthotropic elastic cylinder due to a plane temperature distribution[J].Journal of Thermal Stresses,1978,1(1):13-24. doi: 10.1080/01495737808926927
    [11]
    Gamer U. Stress distribution in the rotating elastic-plastic disk[J].ZAMM, 1985, 65(3): T136-T137.
    [12]
    Güven U. Elastic-plastic stresses in a rotating annular disk of variable thickness and variable density[J].International Journal of Mechanical Sciences, 1992, 34(11): 133-138. doi: 10.1016/0020-7403(92)90078-U
    [13]
    You L H, Zhang J J. Elastic-plastic stresses in a rotating solid disk[J].International Journal of Mechanical Sciences, 1999, 41(3): 269-282. doi: 10.1016/S0020-7403(98)00049-6
    [14]
    Eraslan A N, Orcan Y. On the rotating elastic-plastic solid disk of variable thickness having concave profiles[J].International Journal of Mechanical Sciences, 2002,44(7): 1445-1466. doi: 10.1016/S0020-7403(02)00038-3
    [15]
    Zenkour A M, Allam M N M. On the rotating fiber-reinforced viscoelastic composite solid and annular disks of variable thickness[J].International Journal of Computational Methods in Engineering Science and Mechanics,2006, 7(1): 21-31. doi: 10.1080/155022891009639
    [16]
    Farshad M. Stresses in rotating disks of materials with different compressive and tensile moduli[J].International Journal of Mechanical Sciences, 1974,16(8): 559-564. doi: 10.1016/0020-7403(74)90021-6
    [17]
    Tutuncu N. Effect of anisotropy on stresses in rotating disks[J].International Journal of Mechanical Sciences, 1995,37(8): 873-879. doi: 10.1016/0020-7403(94)00097-4
    [18]
    Güven U, Parmaksizoglu C, Altay O.Elastic-plastic rotating annular disk with rigid casing[J].ZAMM, 1999,79(7): 499-503. doi: 10.1002/(SICI)1521-4001(199907)79:7<499::AID-ZAMM499>3.0.CO;2-C
    [19]
    Zenkour A M. Analytical solutions for rotating exponentially-graded annular disks with various boundary conditions[J].International Journal of Structural Stability and Dynamics,2005, 5(4): 557-577. doi: 10.1142/S0219455405001726
    [20]
    Horgan C O, Chan A M.The pressurized hollow cylinder or disk problem for functionally graded isotropic linearly elastic materials[J].Journal of Elasticity, 1999,55(1): 43-59. doi: 10.1023/A:1007625401963
    [21]
    Horgan C O, Chan A M. The stress response of functionally graded isotropic linearly elastic rotating disks[J].Journal of Elasticity, 1999,55(3): 219-230. doi: 10.1023/A:1007644331856
    [22]
    Tarn J Q. Exact solutions for functionally graded anisotropic cylinders subjected to thermal and mechanical loads[J].International Journal of Solids and Structures, 2001,38(46/47): 8189-8206. doi: 10.1016/S0020-7683(01)00182-2
    [23]
    Rooney F, Ferrari M. Tension, bending, and flexure of functionally graded cylinders[J].International Journal of Solids and Structures, 2001,38(3): 413-421. doi: 10.1016/S0020-7683(00)00036-6
    [24]
    Pobedria B E. Structural anisotropy in viscoelasticity[J].Polym Mech,1976,12: 557-561.
    [25]
    Zenkour A M. Buckling of fiber-reinforced viscoelastic composite plates using various plate theories[J].Journal of Engineering Mathematics, 2004,50(1): 75-93. doi: 10.1023/B:ENGI.0000042123.94111.35
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3134) PDF downloads(572) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return