DENG Zhen-guo, MA He-ping. Optimal Error Estimates for Fourier Spectral Approxiation of the Generalized KdV Equation[J]. Applied Mathematics and Mechanics, 2009, 30(1): 30-39.
Citation: DENG Zhen-guo, MA He-ping. Optimal Error Estimates for Fourier Spectral Approxiation of the Generalized KdV Equation[J]. Applied Mathematics and Mechanics, 2009, 30(1): 30-39.

Optimal Error Estimates for Fourier Spectral Approxiation of the Generalized KdV Equation

  • Received Date: 2008-03-05
  • Rev Recd Date: 2008-11-28
  • Publish Date: 2009-01-15
  • A Fourier spectral method for the generalized Korteweg-de Vries equation with periodic boundary conditions is analyzed and corresponding optimal error estimate in L2-norm is obtained, which improves the one by Maday and Quarteroni. Also a modified Fourier pseudospectral method is presented and it is proven that it enjoys the same convergence properties as the Fourier spectral method.
  • loading
  • [1]
    Abe K,Inoue O.Fourier expansion solution of the KdV equation[J].J Computational Physics,1980, 34(2):202-210. doi: 10.1016/0021-9991(80)90105-9
    [2]
    Fornberg B,Whitham G B. A numerical and theoretical study of certain nonlinear phenomena[J].Phil Trans Roy Soc London Ser A,1978,289(1361):373-404. doi: 10.1098/rsta.1978.0064
    [3]
    Chan T F,Kerkhoven T. Fourier methods with extended stability intervals for the Korteweg-de Vries equation[J].SIAM J Numerical Analysis,1985,22(3):441-454. doi: 10.1137/0722026
    [4]
    Ma H P,Guo B Y. The Fourier pseudospectral method with a restrain operator for the Korteweg-de Vries equation[J].J Computational Physics,1986,65(1):120-137. doi: 10.1016/0021-9991(86)90007-0
    [5]
    Maday Y,Quarteroni A. Error analysis for spectral approximation of the Korteweg-de Vries equation[J].RAIRO Modélisation Mathématique et Analyse Numérique,1988,22(3):499-529.
    [6]
    Kalisch H. Rapid convergence of a Galerkin projection of the KdV equation[J].Comptes Rendus Mathematique,2005,341(7):457-460. doi: 10.1016/j.crma.2005.09.006
    [7]
    Bjrkav[KG-*4]. ag M,Kalisch H. Exponential convergence of a spectral projection of the KdV equation[J].Physics Letters A,2007,365(4):278-283. doi: 10.1016/j.physleta.2006.12.085
    [8]
    Kreiss H O,Oliger J. Stability of the Fourier method[J].SIAM J Numerical Analysis,1979,16(3):421-433. doi: 10.1137/0716035
    [9]
    Adams R A.Sobolev Spaces[M]. New York:Academic Press,1975.
    [10]
    Ma M P,Sun W W. Optimal error estimates of the Legendre-Petrov-Galerkin method for the Korteweg-de Vries equation[J].SIAM J Numerical Analysis,2001,39(4):1380-1394. doi: 10.1137/S0036142900378327
    [11]
    Wahlbin Lars B. A dissipative Galerkin method for the numerical solution of first order hyperbolic equations[A].In:de Boor C,Ed.Mathematical Aspects of Finite Elements in Partial Differential Equations[C].New York:Academic Press,1974,147-169.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3118) PDF downloads(725) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return