| Citation: | PAN Ke-jia, TAN Yong-ji, HU Hong-ling. Mathemtical Model and Numerical Method for Spontaneous Potential Log in Heterogeneous Formations[J]. Applied Mathematics and Mechanics, 2009, 30(2): 203-212. | 
 
	                | [1] | Smits L J M. SP log interpretation in shaly sands[J].Trans AIME,1968,243(2):123-136. | 
| [2] | Howard A Q. A new invasion model for resistivity log interpretation[J].The Log Analyst,1992,33(2):96-110. | 
| [3] | Oppenheim A V,Schafer R W.Digital Signal Processing[M].New Jersey:Prentice Hall,1975. | 
| [4] | Li T T,Tan Y J,Peng Y J,et al.Mathematical methods for the SP well-loging[A]. In:Spigler R,Ed.Applied and Industrial Mathematics[C]. Vol 1.Venice: Kluwer Academic Publishers,1991,343-349. | 
| [5] | Li T T,Tan Y J,Peng Y J. Mathematical model and method for spontaneous potential well-logging[J].Eur J Appl Math,1994,5(2):123-139. | 
| [6] | Li T T. A class of non-local boundary value problems for partial differential equations and its applications in numerical analysis[J].J Comput Appl Math,1989,28(1989):49-62. doi:  10.1016/0377-0427(89)90320-8 | 
| [7] | Cai Z J. Asymptotic behavior for a class of elliptic equivalued surface boundary value problem with discontinuous interface conditions[J].Appl Math J Chinese Univ Ser B,1995,10(3):237-250. doi:  10.1007/BF02662867 | 
| [8] | 张庚骥. 电法测井[M].上册. 北京:石油工业出版社,1984. | 
| [9] | Adams R A.Sobolev Spaces[M].New York:Academic Press,1975. | 
| [10] | 彭跃军.一类偏微分方程边值问题适定的充分必要条件[J]. 同济大学学报,1988,16(1):91-100. | 
| [11] | Zhou Y,Cai Z J. Convergence of a numerical method in mathematical spontaneous potential well-logging[J].Eur J Appl Math,1996,7(1):31-41. | 
| [12] | Chew W C,Nie Z P,Liu Q H. An efficient solution for the response of electrical well logging tools in a complex environment[J].IEEE Trans Geosci Remote Sensing,1991,29(2):308-313. doi:  10.1109/36.73673 | 
| [13] | 袁宁,聂在平,聂小春. 自然电位测井响应的高效数值模拟[J]. 地球物理学报,1998,41(增刊):429-436. | 
| [14] | 李海龙. 均匀地层中自然电位测井方程的“精确解”[J]. 数学年刊,A辑,1996,17(1):87-96. | 
