Payel Das, M. Kanoria. Magneto-Thermo-Elastic Waves in an Infinite Perfectly Conducting Elastic Solid With Energy Dissipation[J]. Applied Mathematics and Mechanics, 2009, 30(2): 213-220.
Citation: Payel Das, M. Kanoria. Magneto-Thermo-Elastic Waves in an Infinite Perfectly Conducting Elastic Solid With Energy Dissipation[J]. Applied Mathematics and Mechanics, 2009, 30(2): 213-220.

Magneto-Thermo-Elastic Waves in an Infinite Perfectly Conducting Elastic Solid With Energy Dissipation

  • Received Date: 2008-02-14
  • Rev Recd Date: 2008-12-04
  • Publish Date: 2009-02-15
  • The generalized theory of thermo-elastiaty, r.e., Green and Naghdi (G-N)Ⅲ theory, with energy dissipation(TEWED) is employed in the study of time-harmonic plane wave prpagation in an unbounded, perfectly electxiically conducting elastic medium subject to primary uniform magnetic field. A more general dispersion equation with complex coefficients was obtained for coupled magneto-themlo-elastic wave which is solved in complex domain by using Leguerre's method. It is revealed that the coupled magneto-themlo-elastic wave corresponds to modified dilatational and thermal wave propagation with finite speeds modified by finite thermal wave speeds, thermo-elastic coupling, thermal diffusivity and the external magnetic field. Numerical results for a copper-like material are presented.
  • loading
  • [1]
    Lord H W, Shulman Y. A generalized dynamical theory of thermoelasticity[J].Journal of Mech Phys Solids,1967,15(5):299-309. doi: 10.1016/0022-5096(67)90024-5
    [2]
    Green A E, Lindsay K A. Thermoelasticity[J].Journal of Elasticity,1972,2(1):1-7. doi: 10.1007/BF00045689
    [3]
    Paria G.On magneto-thermo-elastic plane waves[J].Proc Cambridge Philos Soc,1962,58(5):527-531. doi: 10.1017/S030500410003680X
    [4]
    Nayfeh A, Nemat-Nasser S. Thermo elastic waves in solids with thermal relaxation[J]. Acta Mech,1971,12:43-69.
    [5]
    Nayfeh A, Nemat-Nasser S. Electro magneto-thermo-elastic plane waves in solid with thermal relaxation[J].J Appl Mech,1972,39(1):108-113. doi: 10.1115/1.3422596
    [6]
    Roychoudhury S K, Chatterjee(Roy) Gargi. A coupled magnetothermo-elastic problem in a perfectly conducting elastic half-space with thermal relaxation[J].Internat J Math Mech Sci,1990,13(3):567-578.
    [7]
    Hsieh R K T. Mechanical modelling of new electromagnetic materials[A].In:Proceeding of the IUTAM Symposium on the Mechanical Modelling of New Electromagnetic Materials[C]. Stockholm, Sweden, 2-6 April, 1990.
    [8]
    Ezzat Magdy A. State space approach to generalized magneto thermo elasticity with two relaxation times in a medium of perfect conductivity[J].Internat J Engrg Sci,1997,35(8):741-752. doi: 10.1016/S0020-7225(96)00112-7
    [9]
    Ezzat M A, Othman M I, El-Karamany A S.Electromagneto-thermoelastic plane waves with thermal relaxation a medium of perfect conductivity[J].Journal of Thermal Stresses,2001,24(5):411-432. doi: 10.1080/01495730151126078
    [10]
    Sherief Hany H, Yoset Handy M. Short time solution for a problem in magneto thermoelasticity with thermal relaxation[J].Journal of Thermal Stresses,2004,27(6):537-559. doi: 10.1080/01495730490451468
    [11]
    Baksi A, Bera R K. Eigen function expansion method for the solution of magneto-thermoelastic problems with thermal relaxation and heat source in three dimension[J].Science Direct, Mathematical and Computer Modelling,2005,42:533-552.
    [12]
    Green A E, Naghdi P M. Thermoelasticity without energy dissipation[J].Journal of Elasticity,1993,31(3):189-208. doi: 10.1007/BF00044969
    [13]
    Roychoudhuri S K. Magneto-thermo-elastic waves in an infinite perfectly conducting solid without energy dissipation[J].J Tech Phys,2006,47(2):63-72.
    [14]
    Chandrasekharaiah D S. A note on the uniqueness of solution in the linear theory of thermoelasticity without energy dissipation[J].Journal of Elasticity,1996,43(3):279-283. doi: 10.1007/BF00042504
    [15]
    Chandrasekharaiah D S. A uniqueness theorem in the theory of thermoelasticity without energy dissipation[J].Journal of Thermal Stress,1996,19(3):267-272. doi: 10.1080/01495739608946173
    [16]
    Chandrasekharaiah D S, Srinath K S. Thermoelastic interaction without energy dissipation due to a point heat sources[J].Journal of Elasticity,1998,50(2):97-108. doi: 10.1023/A:1007412106659
    [17]
    Roychoudhuri S K, Dutta P S.Thermo-elastic interaction without energy dissipation in an infinite solid with distributed periodically varying heat source[J].International Journal of Solid Structures,2005,42(14):4192-4203. doi: 10.1016/j.ijsolstr.2004.12.013
    [18]
    Green A E, Naghdi P M. On undamped heat waves in an elastic solid[J].Journal of Thermal Stress,1992,15(2):251-264.
    [19]
    Bandyopadhyay N, Roychoudhuri S K. Thermoelastic wave propagation without energy dissipation in an elastic half space[J].Bull Cal Math Soc,2005,97(6):489-502.
    [20]
    Mallik S H,Kanoria M. A two dimensional problem in generalized thermoelasticity for a rotating orthotropic infinite medium with heat sources[J].Indian J Math,2007,49(1):47-70.
    [21]
    Banik S, Mallik S H, Kanoria M. Thermoelastic interaction with energy dissipation in an infinite solid with distributed periodically varying heat sources[J].Internat J Pure Appl Math,2007,342:231-246.
    [22]
    Kar Avijit, Kanoria M. Thermoelastic interaction with energy dissipation in an unbounded body with a spherical hole[J].International Journal of Solids and Structures,2007, 44(9):2961-2971. doi: 10.1016/j.ijsolstr.2006.08.030
    [23]
    Kar Avijit, Kanoria M. Thermoelastic interaction with energy dissipation in a transversely isotropic thin circular disc[J]. European Journal of Mechanics Solids, 2007,26(6):969-981. doi: 10.1016/j.euromechsol.2007.03.001
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3044) PDF downloads(491) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return