Citation: | GUO Yan, LIU Ru-xun. Characteristic-Based Finite Volume Scheme for 1D Euler Equations[J]. Applied Mathematics and Mechanics, 2009, 30(3): 291-300. |
[1] |
Shu C W,Osher S.Efficient implementation of essentially non-oscillatory shock capturing schemes[J].J Comput Phys,1988,77(2):439-471. doi: 10.1016/0021-9991(88)90177-5
|
[2] |
Shu C W,Osher S.Efficient implementation of essentially non-oscillatory shock capturing schemes Ⅱ[J].J Comput Phys,1989,83(1):32-78. doi: 10.1016/0021-9991(89)90222-2
|
[3] |
Jiang G,Shu C W.Efficient implementation of weighted ENO schemes[J]. J Comput Phys,1996,126(1):202-228. doi: 10.1006/jcph.1996.0130
|
[4] |
Levy D,Pupo G,Russo G.Compact central WENO schemes for multidimensional conservation laws[J].SIAM J Sci Comput,2000,22(2):656-672. doi: 10.1137/S1064827599359461
|
[5] |
Capdeville G.A central WENO scheme for solving hyperbolic conservation laws on non-uniform meshes[J].J Comput Phys,2008,227(5):2977-3014. doi: 10.1016/j.jcp.2007.11.029
|
[6] |
陈荣三.大密度和大压力比可压缩的数值计算[J].应用数学和力学,2008,29(5):609-617.
|
[7] |
涂国华,袁湘江,陆利蓬.激波捕捉差分方法研究[J].应用数学和力学,2007,28(4):433-440.
|
[8] |
HU Jun,GUO Shao-gang.Solution to Euler equations by high-resolution upwind compact scheme based on flux splitting[J]. Internat J Numer Meth Fluids,2008,56(11):2139-2150. doi: 10.1002/fld.1611
|
[9] |
Xiao F,Peng X. A convexity preserving scheme for conservative advection transport[J].J Comput Phys,2004,198(2):389-402. doi: 10.1016/j.jcp.2004.01.013
|
[10] |
Ii S,Xiao F. CIP/multi-moment finite volume method for Euler equations:A semi-Lagrangian characteristic formulation[J]. J Comput Phys,2007,222(2):849-871. doi: 10.1016/j.jcp.2006.08.015
|
[11] |
Qiu J,Shu C W. Hermite WENO schemes and their application as limiters for Runge-Kutta discontinuous Galerkin method:one dimensional case[J].J Comput Phys,2004,193(1):115-135. doi: 10.1016/j.jcp.2003.07.026
|
[12] |
Lax P D. Weak solutions of nonlinear hyperbolic equations and their numerical computation[J].Commun Pure Appl Math,1954,7(1):198-232.
|
[13] |
Sod G. A survey of several finite difference methods for systems of non-linear conservation laws[J].J Comput Phys,1978,27(1):1-31. doi: 10.1016/0021-9991(78)90023-2
|