ZHANG Dao-xiang, FENG Su-xiao, LU Zhi-ming, LIU Yu-lu. Application of Differential Constraints Method on Solving Exact Solutions of a Second-Grade Fluid[J]. Applied Mathematics and Mechanics, 2009, 30(4): 379-387.
Citation: ZHANG Dao-xiang, FENG Su-xiao, LU Zhi-ming, LIU Yu-lu. Application of Differential Constraints Method on Solving Exact Solutions of a Second-Grade Fluid[J]. Applied Mathematics and Mechanics, 2009, 30(4): 379-387.

Application of Differential Constraints Method on Solving Exact Solutions of a Second-Grade Fluid

  • Received Date: 2008-02-19
  • Rev Recd Date: 2009-02-13
  • Publish Date: 2009-04-15
  • Differential constraints method is used to investigate analytical solutions for a second-grade fluid flow.By the first-order differential constraint condition,some exact solutions of Poiseuille flows,jet flows and Couette flows subjected to suction or blowing forces,planar elongational flows were derived.In addition,two new classes of exact solutions for a second-grade fluid flow were found.Exact solutions obtained show that the non-Newtonian second-grade flow behavior depends on not only the material viscosity but also the material elasticity.Finally some boundary value problems were discussed.
  • loading
  • [1]
    Яненко Н Н.Избранные Труды[M].Москва:Наука,1991.
    [2]
    Сидоров А Ф,Шапеев В П,Яненко Н Н.Метод Дифференциальных Связей и Его Приложения в Газовой Динамике[M].Новосибирск: Наука,1984.
    [3]
    Andreev V K,Kaptsov O V,Pukhnachev V V,et al.Applications of Group-Theoretic Methods in Hydrodynamics[M]. Dordrecht: Kluwer,1998.
    [4]
    Olver P,Rosenau P. The construction of special solutions to partial differential equations[J].SIAM J Appl Math,1987,47(2):263-278. doi: 10.1137/0147018
    [5]
    Olver P. Direct reduction and differential constraints[J].Proceedings of the Society of London,Series A,1994,444(1922):509-523. doi: 10.1098/rspa.1994.0035
    [6]
    Levi D,Winternitz P. Nonclassical symmetry reduction:example of the Boussinesq equation[J]. J Phys A:Math Gen, 1989,22(15):2915-2924. doi: 10.1088/0305-4470/22/15/010
    [7]
    Polyanin A D,Zaitsev V F. Handbook of Nonlinear Partial Differential Equations[M]. Florida:A CRC Press Company,2004.
    [8]
    Nemenyi P F. Recent developments in inverse and semi-inverse methods in the mechanics of continua[J]. Advances in Applied Mechanics,1951,2(11):123-151. doi: 10.1016/S0065-2156(08)70300-4
    [9]
    Hayat T,Mohyuddin M R,Asghar S. Some inverse solutions for unsteanian fluid[J]. Tamsui Oxford Journal of Mathematical Sciences, 2005,21(1):1-20.
    [10]
    Asghar S,Mohyuddin M R,Hayat T,et al. On inverse solutions of unsteady Riabouchinsky flows of second grade fluid[J]. Tamsui Oxford Journal of Mathematical Sciences, 2006,22(2):221-229.
    [11]
    Labropulu F. A few more exact solutions of a second grade fluid via inverse method[J]. Mech Res Communications,2000,27(6):713-720. doi: 10.1016/S0093-6413(00)00145-2
    [12]
    Mohyuddin M R,Ahmad A. Corrigendum to:inverse solutions for a second-grade fluid for porous medium channel and Hall current effects by Muhammad R Mohyuddin and Ehsan Ellahi Ashraf[J]. Proc Indian Acad Sci (Math Sci),2007,117(2):283-285. doi: 10.1007/s12044-007-0022-0
    [13]
    Siddiqui A M,Mohyuddin M R,Hayat T,et al. Some more inverse solutions for steady flows of a second-grade fluid[J]. Arch Mech,2003,55(4):373-387.
    [14]
    Siddiqui A M,Islam S,Ghori Q K. Two dimensional viscous incompressible flows in a porous medium[J]. Journal of Porous Media,2006,9(6):591-596. doi: 10.1615/JPorMedia.v9.i6.70
    [15]
    谢松柏. 非牛顿流体的某些反解[J]. 北京师范大学学报(自然科学版),2001,37(1):19-21.
    [16]
    刘慈群,黄军旗. 非牛顿流体管内不定常流的解析解[J]. 应用数学和力学,1989, 10(11):939-946.
    [17]
    朱文辉,刘慈群. 二阶非Newton流体环管流动解析解[J]. 应用数学和力学,1993,14(3):195-201.
    [18]
    黄军旗,刘慈群. 环空管内粘弹性流体不定常旋转流的解及流动特性分析[J]. 应用数学和力学,1997,18(6):499-506.
    [19]
    M·禹儒索一. 第二梯度流体的蠕变流和热传导相似解[J]. 应用数学和力学,2004,25(4):425-432.
    [20]
    沈芳,谭文长,赵耀华,等. 广义二阶流体涡流速度的衰减和温度扩散[J]. 应用数学和力学,2004,25(10):1053-1060.
    [21]
    Tan W C,Xian F,Wei L. An exact solution of unsteady Couette flow of generalized second grade fluid[J]. Chinese Science Bulletin,2002,47(21):1783-1785. doi: 10.1360/02tb9389
    [22]
    Xu M Y,Tan W C. Theoretical analysis of the velocity field,stress field and vortex sheet of generalized second order fluid with fractional anomalous diffusion[J]. Science in China ,Ser A,2001,44(11):1387-1399. doi: 10.1007/BF02877067
    [23]
    Coleman B D,Noll W. An approximation theorem for functionals with applications in continuum mechanics[J]. Arch Rat Mech Anal, 1960,6: 355-370. doi: 10.1007/BF00276168
    [24]
    Kaloni P N,Siddqui A M. The flow of a second grade fluid[J].Int J Engng Sci,1983,21(10):1157-1169. doi: 10.1016/0020-7225(83)90080-0
    [25]
    Rivlin R S,Ericksen J L. Stress deformation relations for isotropic materials[J]. J Rat Mech Anal, 1955,4(4):323-425.
    [26]
    王竹溪,郭敦仁.特殊函数概论[M].北京:北京大学出版社,2000.
    [27]
    Thomas A H,Todd B D. On the Arnold cat map and periodic boundary conditions for planar elongational flow[J].Molecular Physics,2003,101(23):3445-3454. doi: 10.1080/00268970310001648726
    [28]
    d’Avino G,Maffettone P L,Hulsen M A,et al. Numerical simulation of planar elongational flow of concentrated rigid particle suspensions in a viscoelastic fluid[J]. J Non-Newtonian Fluid Mech,2008,150(2/3):65-79. doi: 10.1016/j.jnnfm.2007.10.001
    [29]
    陈文芳. 非Newton流体力学[M]. 北京:科学出版社,1984.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2828) PDF downloads(671) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return