ZHU Jing, ZHENG Lian-cun, ZHANG Xin-xin. Analytic Solution of Stagnation-Point Flow and Heat Transfer Over a Stretching Sheet by Means of Homotopy Analysis Method[J]. Applied Mathematics and Mechanics, 2009, 30(4): 432-442.
Citation: ZHU Jing, ZHENG Lian-cun, ZHANG Xin-xin. Analytic Solution of Stagnation-Point Flow and Heat Transfer Over a Stretching Sheet by Means of Homotopy Analysis Method[J]. Applied Mathematics and Mechanics, 2009, 30(4): 432-442.

Analytic Solution of Stagnation-Point Flow and Heat Transfer Over a Stretching Sheet by Means of Homotopy Analysis Method

  • Received Date: 2008-11-09
  • Rev Recd Date: 2009-02-16
  • Publish Date: 2009-04-15
  • The steady two-dimensional stagnation-point flow of an incompressible viscous fluid towards a stretching sheet whose velocity is proportional to the distance from the slit is concerned.The governing system of partial differential equations was first transformed into a system of dimensionless ordinary differential equations.The analytical solutions for the velocity distribution and dimensio nless temperature profiles were obtained for the various values of the ratio of free stream velocity and stretching velocity,Prandtl number,Eckert number and dimensionality index in the series forms with the help of homotopy analysis method(HAM).It is shown that a boundary layer is formed when the free stream velocity exceeds the stretching velocity and an inverted boundary layer is formed when the free stream velocity is less than the stretching velocity.Graphs are plotted to discuss the effects of different parameters.
  • loading
  • [1]
    Crane L I. Flow past a stretching plate[J].J Appl Mech Phys(ZAMP),1970,21:645-657.
    [2]
    Brady J F, Acrivos A. Steady flow in a channel or tube with an accelerating surface velocity—an exact solution to the Navier-Stokes equations with reverse flow[J].J Fluid Mech,1981,112:127-150. doi: 10.1017/S0022112081000323
    [3]
    Jacobi A M. A scale analysis approach to the correlation of continuous moving sheet (backward boundary layer) forced convective heat transfer[J].J Heat Trans-TASME,1993,115(4):1058-1061. doi: 10.1115/1.2911362
    [4]
    Gupta P S, Gupta A S. Heat and mass transfer on a stretching sheet with suction or blowing[J]. Can J Chem Eng,1977,55:744-746. doi: 10.1002/cjce.5450550619
    [5]
    Hussaini M Y, Lakin W D, Nachman A. On similarity solutions of a boundary layer problem with an upstream moving wall[J].SIAM J Appl Math,1987,47(4):699-709. doi: 10.1137/0147048
    [6]
    McLeod J B, Rajagopal K R. On the uniqueness of flow of a Navier-stokes fluid due to a stretching boundary[J].Arch Ratl Mech Anal,1987,98(4):385-393. doi: 10.1007/BF00276915
    [7]
    Chen C K, Char M. Heat transfer of a continuous stretching surface with suction or blowing[J]. J Math Anal Appl,1988,135(2):568-580. doi: 10.1016/0022-247X(88)90172-2
    [8]
    Riley N, Weidman P D. Multiple solutions of the Falkner-Skan equation for flow past a stretching boundary[J].SIAM J Appl Math,1989,49(5):1350-1358. doi: 10.1137/0149081
    [9]
    Mahapatra T R, Gupta A S. Heat transfer in stagnation-point flow towards a stretching sheet[J].Heat and Mass Transfer,2002,38(6):517-521. doi: 10.1007/s002310100215
    [10]
    Khan S K. Heat transfer in a viscoelastic fluid flow over a stretching surface with heat source/sink, suction/blowing and radiation[J].Int J Heat Mass Transfer,2006,49(3/4):628-639. doi: 10.1016/j.ijheatmasstransfer.2005.07.049
    [11]
    Liao S J.Beyond Perturbation:Introduction to Homotopy Analysis Method[M].Boca Raton:Chapman Hall/CRC, 2003.
    [12]
    Liao S J, Pop I. Explicit analytic solution for similarity boundary layer equations[J].Int J Heat Mass Transter,2004,47(1):75-85. doi: 10.1016/S0017-9310(03)00405-8
    [13]
    Xu H, Liao S J. Series solutions of unsteady magnetohydrodynamic flows of non-Newtonian fluids caused by an impulsively stretching plate[J].J Non-Newtonian Fluid Mech,2005,129(1):46-55. doi: 10.1016/j.jnnfm.2005.05.005
    [14]
    Hayat T, Abbas Z, Sajid M. Series solution for the upper-convected Maxwell fluid over a porous streching plate[J].Phys Lett A,2006,358(6):396-403. doi: 10.1016/j.physleta.2006.04.117
    [15]
    Sajid M, Hayat T, Asghar S. On the analytic solution of the steady flow of a fourth grade fluid[J].Phys Lett A,2006,355(1):18-26. doi: 10.1016/j.physleta.2006.01.092
    [16]
    Abbasbandy S. The application of homotopy analysis method to nonlinear equations arising in heat transfer[J].Phys Lett A,2006,360(1):109-113. doi: 10.1016/j.physleta.2006.07.065
    [17]
    Hayat T, Sajid M. Analytic solution for axisymmetric flow and heat transfer of a second grade fluid past a stretching sheet[J].Int J Heat mass Transter,2007,50(1/2):75-84. doi: 10.1016/j.ijheatmasstransfer.2006.06.045
    [18]
    Tan Y, Xu H,Liao S J. Explicit series solution of travelling waves with a front of Fisher equation[J]. Chaos, Solitons and Fractals,2007,31(2):462-472. doi: 10.1016/j.chaos.2005.10.001
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3141) PDF downloads(638) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return