M. B. A. Mansour. Existence of Traveling Wave Solutions for a Nonlinear Dissipative-Dispersive Equation[J]. Applied Mathematics and Mechanics, 2009, 30(4): 479-483.
Citation: M. B. A. Mansour. Existence of Traveling Wave Solutions for a Nonlinear Dissipative-Dispersive Equation[J]. Applied Mathematics and Mechanics, 2009, 30(4): 479-483.

Existence of Traveling Wave Solutions for a Nonlinear Dissipative-Dispersive Equation

  • Received Date: 2008-06-09
  • Rev Recd Date: 2009-03-06
  • Publish Date: 2009-04-15
  • A dissipative-dispersive nonlinear equation which appears in many physical phenomena is considered.By using dynamical systems method,specifically the geometric singular perturbation method,the existence of traveling wave solutions of the equation when the dissipative terms have sufficiently small coefficients was investigated.It was shown that the traveling waves exist on a two-dimensional slow manifold in a three-dimensional system of ODEs.Then,by using the Melnikov method,the existence of a homoclinic orbit in this manifold,which corresponds to a solitary wave solution of the equation,was established.Furthermore,some numerical computations were presented to show approximations of such wave orbits.
  • loading
  • [1]
    Kliakhandler I L, Porubov A V, Velarde M G.Localized finite-amplitude disturbances and selection of solitary waves[J].Phys Rev E,2000,62:4959-4962. doi: 10.1103/PhysRevE.62.4959
    [2]
    Lou S Y, Huang G X, Ruan H Y. Exact solitary waves in a convecting fluid[J].J Phys A,1991,24(11): L587-L590.
    [3]
    Porubov A V. Exact travelling wave solutions of nonlinear evolution equation of surface waves in a convecting fluid[J].J Phys A,1993,26(17): L797-L800.
    [4]
    Velarde M G, Nekorkin V I, Maksimov A G. Further results on the evolution of solitary waves and their bound states of a dissipative Korteweg-de Vries equation[J].Internat J Bifurcation Chaos,1995,5(3): 831-839. doi: 10.1142/S0218127495000612
    [5]
    Fenichel N. Geometric singular perturbation theory for ordinary differential equations [J].J Differantial Equations,1979,31(1): 53-98. doi: 10.1016/0022-0396(79)90152-9
    [6]
    Jones C K R T. Geometric singular perturbation theory[A].In: Johnson R , Ed.Dynamical Systems[C].Berlin, Heidelberg: Springer-Verlag, 1995.
    [7]
    Ruan S G, Xiao D M. Stability of steady states and existence of travelling waves in a vector-disease model[J].Proc Roy Soc Edinburgh, Sect A,2004,134(5): 991-1011. doi: 10.1017/S0308210500003590
    [8]
    Ktrychko Y N, Bartuccelli M V, Blyuss K B. Persistence of traveling wave solutions of a fourth order diffusion system[J].J Comput Appl Math,2005,176(2): 433-443. doi: 10.1016/j.cam.2004.07.028
    [9]
    Mansour M B A. Existence of traveling wave solutions in a hyperbolic-elliptic system of equations[J].Comm Math Sci,2006,4:731-739.
    [10]
    Guckenheimer J, Holmes P.Nonlinear Oscillations, Dynamical System, and Bifurcation of Vector Fields[M]. New York: Springer-Verlag, 1983.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3008) PDF downloads(593) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return