LU Jun-an, XIE Jin, LÜ Jin-hu, CHEN Shi-hua. Control Chaos in Transition System Using Sampled-Data Feedback[J]. Applied Mathematics and Mechanics, 2003, 24(11): 1157-1162.
Citation: LU Jun-an, XIE Jin, LÜ Jin-hu, CHEN Shi-hua. Control Chaos in Transition System Using Sampled-Data Feedback[J]. Applied Mathematics and Mechanics, 2003, 24(11): 1157-1162.

Control Chaos in Transition System Using Sampled-Data Feedback

  • Received Date: 2001-08-13
  • Rev Recd Date: 2003-07-19
  • Publish Date: 2003-11-15
  • The method for controlling chaotic transition system was investigatede using sampled data. The output of chaotic transition system was sampled at a given sampling rate, then the sampled output was used by a feedbacks ubsystem to cosntruct a control signal for controlling chaotic transition system to the origin. Numerical simulations are presented to show the effectiveness and feasibility of the developed controller.
  • loading
  • [1]
    Chen G,Dong X.From Chaos to Order:Perspectives,Methodologies and Applications[M].Singapore:World Scientific Press,1998.
    [2]
    吕金虎,陆君安,陈士华.混沌时间序列分析及其应用[M].武汉:武汉大学出版社,2002.
    [3]
    陈士华,陆君安.混沌动力系统初步[M].武汉:武汉水利电力大学出版社,1998.
    [4]
    Ott E,Grebogi C,Yorke J A.Controlling chaos[J].Phys Rev Lett,1990,64(11):1196-1199.
    [5]
    Fuh C C,Tung P C.Controlling chaos using differential geometric method[J].Phys Rev Left,1995,75(16):2952-2955.
    [6]
    Sanchez E N,Perez J P,Martinez M,et al.Chaosstabilization:an inverse optimal control approach[J].Latin Amer Appl Res,2002,32(1):111-114.
    [7]
    LU Jin-hu,ZHANG Suo-chun.Controlling Chen's chaotic attractor using backstepping design based on parameters identification[J].Phys Left A,2001,286(2/3):148-152.
    [8]
    LU Jin-hu,ZHOU Tian-shou,ZHANG Suo-chun.Controlling Chen's chaotic attractor using feedback function based on parameters identification[J].Chinese Physics,2002,11(1):12-16.
    [9]
    Yang T,Chua L O.Control of chaos using sampled-data feedback control[J].Int J Bifurcation and Chaos,1998,8(12):2433-2438.
    [10]
    GuoSM,ShiehLS,ChenG,et al.Ordering chaos in Chua'scircuit:a sampled data feedback and digital redesign approach[J].Int J Bifurcation and Chaos,2000,10(9):2221-2231.
    [11]
    YANG Ling,LIU Zeng-rong,MAO Jian-min.Controlling hyperchaos[J].Phys Rev Lett,2000,84(1):67-70.
    [12]
    MAO Jian-min,LIU Zeng-rong,YANG Ling.Straight-line stabilization[J].Phys Rev E,2000,62(4):4846-4849.
    [13]
    杨凌,刘曾荣.OGY方法的改进和证明[J].应用数学和力学,1998,19(1):1-9.
    [14]
    Lorenz E N.Deterministic non-periodic flows[J].JAtmos Sci,1963,20(1):130-141.
    [15]
    Stewart I.The Lorenz attractor exists[J].Nature,2000,406(6799):948-949.
    [16]
    ChenG,UetaT.Yetanotherchaoticattractor[J].Int JBifurcation and Chaos,1999,9(7):1465-1466.
    [17]
    VanecekA,Celikovsky S.Control Systems:From Linear Analysis to Synthesis of Chaos[M].London:Prentice-Hall,1996.
    [18]
    LU Jin-hu,CHEN Guan-rong.A new chaotic attractor coined[J].Int J Bifurcation and Chaos,2002,12(3):659-661.
    [19]
    LUJin-hu,CHEN Guan-rong,ZHANG Suo-chun.Dynamical analysis of a new chaotic attractor[J].Int J Bifurcation and Chaos,2002,12(5):1001-1015.
    [20]
    周志明.一个新的混沌反控制模型——Lu系统[J].咸宁师专学报,2002,22(3):19-21.
    [21]
    LU Jin-hu,CHEN Guan-rong,CHENG Dai-zhan,et al.Bridge the gap between the Lorenz system and the Chen system[J].Int J Bifurcation and Chaos,2002,12(12):2917-2926.
    [22]
    Wilkinson J.The Algebraic Eigenvalue Problem[M].Oxford:Clarendon Press,1965.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2404) PDF downloads(581) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return