By using Fourier transformation the boundary problem of periodical interfacial cracks in anisotropic elastoplastic bimaterial was transformed into a set of dual integral equations and then it was further reduced by means of definite integral transformation into a group of singular equations. Closed form of its solution was obtained and three corresponding problems of isotropic bimaterial, of a single anisotropic material and of a bimaterial of isotropy-anisotropy were treated as the specific cases. The plastic zone length of the crack tip and crack openning displacement(COD) decline as the smaller yield limit of the two bonded materials rises, and they were also determined by crack length and the space between two neighboring cracks. In addition, COD also relates it with moduli of the materials.