WU Ying, LI Shi-rong, TENG Zhao-chun. Post-Buckling of a Cantilever Rod with Variable Cross-Sections Under Combined Load[J]. Applied Mathematics and Mechanics, 2003, 24(9): 984-990.
Citation: WU Ying, LI Shi-rong, TENG Zhao-chun. Post-Buckling of a Cantilever Rod with Variable Cross-Sections Under Combined Load[J]. Applied Mathematics and Mechanics, 2003, 24(9): 984-990.

Post-Buckling of a Cantilever Rod with Variable Cross-Sections Under Combined Load

  • Received Date: 2001-06-28
  • Rev Recd Date: 2003-05-28
  • Publish Date: 2003-09-15
  • Based on the geometrically non-linear theory of axially extensible elastic rods, the governing equations of post-buckling of a clamped-free rod with variable cross-sections, subjected to a combined load, a concentrated axial load P at the free end and a non-uniformly distributed axial load q,are established. By using shooting method, the strong nonlinear boundary value problems are numerically solved. The secondary equilibrium paths and the post-buckling configurations of the rod with linearly varied cross-sections are presented.
  • loading
  • [1]
    Euler L.De Curvis Elasticis, Methodus Inveniendi Lineas Maximi Minimive Proprietate Ganudentes[M].Lausanne & Geneva, 1744.
    [2]
    Lagrange J L. Qeuvres de Lagrange[M].Vol 2.Paris:Gauthier-Villars, 1868,125-170.
    [3]
    Love A E H.Treaties on the Mathematical Theory of Elasticity[M].New York:Dever, 1927.
    [4]
    Timoshenko S P,Gere J M.Theory of Elastic Stability[M].2nd Ed. New York:MacGraw-Hill,1961.
    [5]
    Wang C Y.Post-buckling of a clamped-simply supported elastica[J].International Journal of Non-Linear Mechanics,1997,32(6):1115-1122.
    [6]
    Plaut R H,Suherman S,Dillard D A,et al.Deflections and buckling of a bent elastics in contact with a flat surface[J].International Journal of Solids and Structures,1999,36(8): 1209-1229.
    [7]
    Lee K. Post-buckling of uniform cantilever column under a combined load[J].International Journal of Non-Linear Mechanics, 2001,36(5):813-816.
    [8]
    程昌钧,朱正佑.结构的分叉与屈曲[M].兰州:兰州大学出版社,1991.
    [9]
    朱正佑,程昌钧.分支问题的数值计算方法[M].兰州:兰州大学出版社,1989.
    [10]
    李世荣,李中明.压杆过屈曲分析中轴线无伸长假设的定量讨论[J].兰州大学学报(自然科学版),1997,33(4):42-46.
    [11]
    李世荣,杨静宁.固支-简支变截面杆的过屈曲模型及其数值解[J].计算力学学报,2000,17(1):114-118.
    [12]
    李世荣,程昌钧.加热弹性杆热屈曲分析[J].应用数学和力学,2000,21(2):119-125.
    [13]
    李世荣.非对称支承弹性杆的热过屈曲[J].工程力学,2000,17(5):115-120.
    [14]
    LI Shi-rong,ZHOU You-he,ZHENG Xiao-jing.Thermal post-buckling of a heated elastic rod with pinned-fixed ends[J].Journal of Thermal Stresses, 2002, 25(1):45-56.
    [15]
    Coffin D W,Bloom F.Elastica solution for the hygrothermal buckling of a beam[J].International Journal of Non-Linear Mechanics,1999,34(5):935-947.
    [16]
    Filipich C P,Rosales M B.A further study on the post-buckling of extensible elastic rods[J].International Journal of Non-Linear Mechanics, 2000,35(5):997-1022.
    [17]
    William H P,Brain P F,Sao A T,et al.Numerical Recipes-the Art of Scientific Computing[M].London: Cambridge University Press, 1986.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2191) PDF downloads(602) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return