DING Xie-ping. Constrained Multiobjective Games in Locally Convex H-Spaces[J]. Applied Mathematics and Mechanics, 2003, 24(5): 441-449.
Citation: DING Xie-ping. Constrained Multiobjective Games in Locally Convex H-Spaces[J]. Applied Mathematics and Mechanics, 2003, 24(5): 441-449.

Constrained Multiobjective Games in Locally Convex H-Spaces

  • Received Date: 2001-07-06
  • Rev Recd Date: 2003-03-07
  • Publish Date: 2003-05-15
  • A new class of constrained multiobjective games with infinite players in noncompact locally convex H-spaces without linear structure are introduced and studied.By applying a Fan-Glicksberg type fixed point theorem for upper semicontinuous set-valued mappings with closed acyclic values and a maximum theorem,several existence theorems of weighted Nath-equilibria and Pareto equilibria for the constrained multiobjective games are proved in noncompact locally convex H-spaces.These theorems improve,unify and generalize the corresponding results of the multiobjective games in recent literatures.
  • loading
  • [1]
    Nash J F.Equilibrium point in n-person games[J].Proc Nat Acad Sci USA,1950,36(1):48-49.
    [2]
    Nash J F.Noncooperative games[J].Ann Math,1951,54(2):286-295.
    [3]
    Szidarovszky F M E,Gershon M E,Duckstein L.Techniques for Multiobjective Decision Marking in System Management[M].Amsterdam Holland: Elsevier,1986.
    [4]
    Zeleny M.Game with multiple payoffs[J].Internat J Game Theory,1976,4(2):179-191.
    [5]
    Bergstresser K,Yu P L.Domination structures and multicriteria problem in N-person games[J].Theory and Decision,1977,8(1):5-47.
    [6]
    Brom P E M,Tijs S H,Van Den Aarssen J C M.Pareto equilibrium in multiobjective games[J].Methods of Operations Research,1990,60(2):303-312.
    [7]
    Yu P L.Second-order game problems:Decision dynamics in gaming phenomena[J].J Optim Theory Appl,1979,27(1):147-166.
    [8]
    Chose D,Prasad U R.Solution concepts in two-person multicriteria games[J].J Optim Theory Appl,1989,63(1):167-189.
    [9]
    Wang S Y.An existence theorem of a Pareto equilibrium[J].Appl Math Lett,1991,4(1):61-63.
    [10]
    Wang S Y.Existence of a Pareto equilibrium[J].J Optim Theory Appl,1993,79(2):373-384.
    [11]
    丁协平.没有紧性,连续性和凹性的多准则对策的帕雷多平衡[J].应用数学和力学,1996,17(9):801-808.
    [12]
    DING Xie-ping.Existence of pareto equilibria for constrained multiobjective games in H-space[J].Comput Math Appl,2000,39(9):125-134.
    [13]
    DING Xie-ping.Constrained multiobjective games in general topological space[J].Comput Math Appl,2000,39(3/14):23-30.
    [14]
    YUAN Xian-zhi,Tarafdar E.Non-compact Pareto equilibria for multiobjective games[J].J Math Anal Appl,1996,204(1):156-163.
    [15]
    YU Jiao,YUAN Xian-zhi.The study of pareto equilibria for multiobjective games by fixed point and Ky Fan minimax inequality methods[J].Comput Math Appl,1998,35(9):17-24.
    [16]
    WU Xian.Approximate selection theorems in H-spaces with application[J].J Math Anal Appl,1999,231(1):118-132.
    [17]
    TIAN Guo-qiang,ZHOU Jian-xin.Transfer continuities,generalizations of the Weierstrass and maximum theorems:a full characterization[J].J Math Economics,1995,24(2):281-303.
    [18]
    Bardaro C,Ceppitelli L.Some further generalizations of Knaster-Kuratowski-Mazurkiewicz theorem and minimax inequalities[J].J Math Anal Appl,1988,132(3):484-490.
    [19]
    Bardaro C,Ceppitelli L.Applications of generalized Knaste-Kuratowskir-Mazurkiewicz theorem to variational inequalities[J].J Math Anal Appl,1989,137(1):46-58.
    [20]
    Horvath C.Points fixes et coincidences dans les espaces topologiques compacts contractiles[J].C R Acad Sci Paris,1984,299:519-521.
    [21]
    Horvath C.Some results on multivalued mappings and inequalities without convexity[A].In:Lin B L,Simons S Eds.Nonlinear and Convex Analysis:Lecture Notes in Pure and Applied Mathematics[C].Vol 107,New York:Dekker,1987,99-106.
    [22]
    Aubin J P.Mathematical Methods of Game and Economic Theory[M].Amsterdam: North-Holland,1982.
    [23]
    Aubin J P,Ekeland I.Applied Nonlinear Analysis[M].New York:Wiley,1984.
    [24]
    丁协平.拟变分不等式和社会平衡[J].应用数学和力学,1991,12(7):599-606.
    [25]
    DING Xie-ping.Generalized quasi-variational inequalities,optimization and equilibrium problems[J].J Sichuan Normal Univ,1998,21(1):22-27.
    [26]
    TIAN Guo-qiang.Generalizations of the FKKM theorem and the Fan minimax inequality with applications to maximal elements,price equilibrium and complementarity[J].J Math Anal Appl,1992,170(2):457-471.
    [27]
    YUAN Xian-zhi,Isac G,Tan K K,et al.The study of minimax inequalities,abstract economics and applications to variational inequalities and Nash equilibria[J].Acta Appl Math,1998,54(1):135-166.
    [28]
    Tarafdar E.A fixed point theorem in H-space and related results[J].Bull Austral Math Soc,1990,42(1):133-140.
    [29]
    Massey W S.Singular Homology Theory[M].New York:Springer-Verlag,1980.
    [30]
    Fan Ky.Fixed points and minmax theorems in locally convex spaces[J].Proc Nat Acad Sci U S A,1952,38:121-126.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2492) PDF downloads(677) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return