LUO Shao-kai. Form Invariance and Noether Symmetrical Conserved Quantity of Relativistic Birkhoffian Systems[J]. Applied Mathematics and Mechanics, 2003, 24(4): 414-422.
Citation: LUO Shao-kai. Form Invariance and Noether Symmetrical Conserved Quantity of Relativistic Birkhoffian Systems[J]. Applied Mathematics and Mechanics, 2003, 24(4): 414-422.

Form Invariance and Noether Symmetrical Conserved Quantity of Relativistic Birkhoffian Systems

  • Received Date: 2002-02-28
  • Rev Recd Date: 2003-01-10
  • Publish Date: 2003-04-15
  • A form invariance of the relativistic Birlchoffian system is studied,and the conserved quantities of the system are obtained. Under the infinitesimal transformation of groups, the definition and criteria of the form invariance of the system were given. In view of the invariance of relativistic Pfaff-Birkhoff-D'Alembert principle under the infinitesimal transformation of groups, the theory of Noether symmetries of the relativistic Birkhoffian system were consttvcted. The relation between the form invariance and the Noether symmetry is studied, and the results show that the form invariance can also lead to the Noether symmetrical conserved quantity of the relativistic Birlchoffian system under certain conditions.
  • loading
  • [1]
    Birkhoff G D.Dynamical System[M].New York:AMS College Publ,Providence,RI,1927.
    [2]
    Santilli R M.Foundations of Theoretical MechanicsⅡ[M].New York:Springer-Verlag,1983,110-280.
    [3]
    MEI Feng-xiang.Noether theory of Birkhoffian system[J].Science in China,Series A,1993,36(12):1456-1547.
    [4]
    MEI Feng-xiang.Stability of equilibrium for the autonomous Birkhoffian system [J].Chinese Science Bulletin,1993,38(10):816-819.
    [5]
    吴惠彬,梅凤翔.广义Birkhoff系统的变换理论[J].科学通报,1995,40(10):885-888.
    [6]
    MEI Feng-xiang,Lévesque E I.Generalized canonical realization and Birkhoff's realization of Chaplygin's nonholonomic system [J].Transactions of the CSME,1995,19(2):59-73.
    [7]
    MEI Feng-xiang.Poisson's theory of Birkhoffian system [J].Chinese Science Bulletin,1996,41(8):641-645.
    [8]
    梅凤翔.用独立变量表示的约束Birkhoff系统的运动稳定性[J].应用数学和力学,1997,,18(1):55-60.
    [9]
    梅凤翔.Birkhoff系统动力学研究进展[J].力学进展,1997,27(4):436-446.
    [10]
    GUO Ying-xiang,MEI Feng-xiang.Integrability for Pfaff constrained systems:A geometrial theory[J].Acta Mechanica Sinica,1998,14(1):85-91.
    [11]
    MEI Feng-xiang,ZHANG Yong-fa,SHANG Mei.Lie symmetries and conserved quantities of Birkhoffian system[J].Mechanics Research Communications,1999,26(1):7-12.
    [12]
    陈向炜,罗绍凯,梅凤翔.二阶自治Birkhoff系统的平衡点分岔[J].固体力学学报,2000,21(3):251-255.
    [13]
    GUO Yong-xin,LUO Shao-kai,SHANG Mei,et al.Birkhoffian formulations of nonholonomic constrained systems[J].Reports on Mathematical Physics,2001,47(3):313-322.
    [14]
    梅凤翔,史荣昌,张永发,等.Birkhoff系统动力学[M].北京:北京理工大学出版社,1996.
    [15]
    梅凤翔.李群和李代数对约束力学系统的应用[M].北京:科学出版社,1999.
    [16]
    李子平.经典和量子约束系统及其对称性质[M].北京:北京工业大学出版社,1993.
    [17]
    罗绍凯.相对论性分析力学理论[J].教材通讯,1987,(5):31-34.
    [18]
    LUO Shao-kai.Relativistic variational principles and equations of motion of high-order nonlinear nonholonomic system [A].In:WANG Zhao-lin Ed.Proc ICDVC[C].Beijing:Peking University Press,1990,645-652.
    [19]
    罗绍凯.相对论非线性非完整系统动力学理论[J].上海力学,1991,12(1):67-70.
    [20]
    罗绍凯.广义事件空间中的相对论性Hamilton原理和Lagrange方程[J].大学物理,1992,11(10):14-16.
    [21]
    罗绍凯.变质量高阶非线性非完整系统的相对论性广义Volterra方程[J].数学物理学报,1992,12(增刊):27-29.
    [22]
    罗绍凯.变质量可控力学系统的相对论性变分原理与运动方程[J].应用数学和力学,1996,17(7):645-653.
    [23]
    李元成,方建会.相对论性万有DAlembert原理的统一形式[J].大学物理,1991,13(6):27-29.
    [24]
    方建会,李元成.变质量系统相对论力学在速度空间中的变分原理[J].力学与实践,1994,13(5):19-20.
    [25]
    罗绍凯.转动相对论力学与转动相对论分析力学[J].北京理工大学学报,1996,16(S1):154-158.
    [26]
    罗绍凯.转动系统的相对论性分析力学理论[J].应用数学和力学,1998,19(1):43-53.
    [27]
    傅景礼,陈向炜,罗绍凯.转动系统相对论性动力学方程的代数结构与Poisson积分[J].应用数学和力学,1999,20(11):1175-1182.
    [28]
    傅景礼,陈向炜,罗绍凯.转动相对论系统的Lie对称性和守恒量[J].应用数学和力学,2000,21(5):495-500.
    [29]
    罗绍凯,郭永新,陈向炜,等.转动相对论系统动力学的积分理论[J].物理学报,2001,50(11):2053-2058.
    [30]
    乔永芬,李仁杰,孟军.非完整转动相对论系统的Lindelof方程[J].物理学报,2001,50(9):1637-1642.
    [31]
    方建会,赵嵩卿.相对论转动变质量系统的Lie对称性与守恒量[J].物理学报,2001,50(3):390-393.
    [32]
    傅景礼,王新民.相对论Birkhoff系统的Lie对称性与守恒量[J].物理学报,2000,49(6):1023-1029.
    [33]
    傅景礼,陈向炜,罗绍凯.相对论Birkhoff系统的Noether理论[J].固体力学学报,2001,22(3):263-267.
    [34]
    傅景礼,陈立群,罗绍凯,等.相对论Birkhoff系统动力学研究[J].物理学报,2001,50(12):2289-2295.
    [35]
    罗绍凯,傅景礼,陈向炜.转动系统相对论Birkhoff动力学的基本理论[J].物理学报,2001,50(3):383-389.
    [36]
    LUO Shao-kai,CHEN Xiang-wei,FU Jing-li.Birkhoff's equations and geometrical theory of rotational relativistic system[J].Chinese Physics,2001,10(4):271-276.
    [37]
    罗绍凯,郭永新,陈向炜,等.转动相对论Birkhoff系统动力学的场方法[J].物理学报,2001,50(11):2049-2052.
    [38]
    Noether A E.Invariance variations problems[J].Kgl Ges Wiss Nachr Gttingen Math-Phys,1918,(2):235-257.
    [39]
    Candottie E,Palmieri C,Vitale B.On the inversion of Noethers theory in classical dynamical system[J].America Journal of Physics,1972,40(5):424-429.
    [40]
    DjukiAc'Dj S, VujanoviAc'B.Noethers theory in classical nonconservative mechanics[J].Acta Mechanica,1975,23(1):17-27.
    [41]
    VujanoviAc'B.Conservation laws of dynamical system via DAlembert principle[J].International Journal of Non-Linear Mechanics,1978,13(2):185-197.
    [42]
    VujanoviAc'B.A study of conservation laws of dynamical systems by means of the differential variational principles of Jourdain and Gauss [J].Acta Mechanica,1986,65(1):63-80.
    [43]
    李子平.约束系统的对称变换[J].物理学报,1981,30(12):1699-1705.
    [44]
    李子平.非完整非保守奇异系统正则形式的Noether定理及其逆定理[J].科学通报,1992,37(23):2204-2205.
    [45]
    Bahar L Y,Kwatny H G.Extension of Noether's theory to constrained nonconservative dynamical systems[J].International Journal of Non-Linear Mechanics,1987,22(2):125-138.
    [46]
    刘端.非完整非保守动力学系统的守恒律[J].力学学报,1989,21(1):75-83.
    [47]
    刘端.非完整非保守动力学系统的Noether定理及其逆定理[J].中国科学A辑,1991,31(4):419-429.
    [48]
    罗绍凯.非完整非有势系统相对于非惯性系的广义Noether定理[J].应用数学和力学,1991,12(9):863-870.
    [49]
    LUO Shao-kai.Generalized Noether's theorem of variable mass higher-order nonholonomic mechanical system in noninertial reference frame [J].Chinese Science Bulletin,1991,36(22):1930-1932.
    [50]
    罗绍凯.相对论力学的广义守恒律[J].信阳师范学院学报,1991,4(4):57-64.
    [51]
    LUO Shao-kai.On the invariant theory of nonholonomic system with constraints of non-Chetaev type[J].Acta Mechanica Solida Sinica,1993,6(1):47-57.
    [52]
    赵跃宇,梅凤翔.力学系统的对称性与守恒量[M].北京:科学出版社,1999,1-72.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2800) PDF downloads(679) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return