XIAO Hai-bin. Existence of Bounded Solutions on the Real line for Lienard System[J]. Applied Mathematics and Mechanics, 2003, 24(4): 423-433.
Citation: XIAO Hai-bin. Existence of Bounded Solutions on the Real line for Lienard System[J]. Applied Mathematics and Mechanics, 2003, 24(4): 423-433.

Existence of Bounded Solutions on the Real line for Lienard System

  • Received Date: 2002-01-21
  • Rev Recd Date: 2003-01-17
  • Publish Date: 2003-04-15
  • The existence of monotone and non-monotone solutions of boundary value problem on the real line for Liénard equation is studied.Applying the theory of planar,dymamical systems and the comparison method of vector fields defined by Liénard system and the system given by symmetric transformation or quasi-symmetric transformation, the invariant regions of the system are constructed. The existence of connecting orbits can be proved. A lot of sufficient conditions to guarantee the existence of solutions of the boundary value problem are obtained.Espeaaly,when the source function is bi-stable,tiie existence of infinitely many monotone solusion is obteained.
  • loading
  • [1]
    Aizik V,Vitaly V,Vladimir V.Travelling Wave Solution of Parabolic System[M].New York:Springer-Verlag,1994,31-32.
    [2]
    Chicone C.Ordinary Differential Equation With Application[M].New York:Springer-Verlag,1999,274-278.
    [3]
    Snchez-GarduAno F,Maini P K.Travelling wave phenomena in some degenerate reaction diffusion equation[J].J Differential Equations,1995,117:281-319.
    [4]
    Aronson D G,Weiberger H F.Multidimentional nonlinear diffusion arising in population genetics[J].Advance in Mathematics,1978,33:33-76.
    [5]
    Gilbarg D.The existence and limit behavior of the one-dimensional shock layer[J].Amer J Math,1951,7:256-274.
    [6]
    Malagati L,Marcelli C.Existence of bounded trajectories via upper and low solution[J].Discrete and Continuous Dynamical System,2000,6(3):575-590.
    [7]
    Gordon P.Pathes connecting elementary critical points of dynamical system[J].SIAM J Appl Math,1974,26(1):35-102.
    [8]
    АвдонинНИ.Овзаиморасположениилиниираэдела[J].ДиффУрав,1968,4(12):2231-2242.
    [9]
    АвдонинНИ.Некоторыепрпзнакисуществованияиотсутсутствиязамкинутыхтраекторийоднойсистемыдифференциальныхуравнений[J].ДиффУрав,1968,4(4):639-645.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2243) PDF downloads(452) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return