XIAO Hai-bin. Existence of Bounded Solutions on the Real line for Lienard System[J]. Applied Mathematics and Mechanics, 2003, 24(4): 423-433.
Citation:
XIAO Hai-bin. Existence of Bounded Solutions on the Real line for Lienard System[J]. Applied Mathematics and Mechanics, 2003, 24(4): 423-433.
XIAO Hai-bin. Existence of Bounded Solutions on the Real line for Lienard System[J]. Applied Mathematics and Mechanics, 2003, 24(4): 423-433.
Citation:
XIAO Hai-bin. Existence of Bounded Solutions on the Real line for Lienard System[J]. Applied Mathematics and Mechanics, 2003, 24(4): 423-433.
Existence of Bounded Solutions on the Real line for Lienard System
Department of Mathematics, Faculty of Sciences, Ningbo University, Ningbo, Zhejiang 315211, P. R. China
Received Date: 2002-01-21
Rev Recd Date:
2003-01-17
Publish Date:
2003-04-15
Abstract
The existence of monotone and non-monotone solutions of boundary value problem on the real line for Liénard equation is studied.Applying the theory of planar,dymamical systems and the comparison method of vector fields defined by Liénard system and the system given by symmetric transformation or quasi-symmetric transformation, the invariant regions of the system are constructed. The existence of connecting orbits can be proved. A lot of sufficient conditions to guarantee the existence of solutions of the boundary value problem are obtained.Espeaaly,when the source function is bi-stable,tiie existence of infinitely many monotone solusion is obteained.
References
[1]
Aizik V,Vitaly V,Vladimir V.Travelling Wave Solution of Parabolic System[M].New York:Springer-Verlag,1994,31-32.
[2]
Chicone C.Ordinary Differential Equation With Application[M].New York:Springer-Verlag,1999,274-278.
[3]
Snchez-GarduAno F,Maini P K.Travelling wave phenomena in some degenerate reaction diffusion equation[J].J Differential Equations,1995,117:281-319.
[4]
Aronson D G,Weiberger H F.Multidimentional nonlinear diffusion arising in population genetics[J].Advance in Mathematics,1978,33:33-76.
[5]
Gilbarg D.The existence and limit behavior of the one-dimensional shock layer[J].Amer J Math,1951,7:256-274.
[6]
Malagati L,Marcelli C.Existence of bounded trajectories via upper and low solution[J].Discrete and Continuous Dynamical System,2000,6(3):575-590.
[7]
Gordon P.Pathes connecting elementary critical points of dynamical system[J].SIAM J Appl Math,1974,26(1):35-102.
[8]
АвдонинНИ.Овзаиморасположениилиниираэдела[J].ДиффУрав,1968,4(12):2231-2242.
[9]
АвдонинНИ.Некоторыепрпзнакисуществованияиотсутсутствиязамкинутыхтраекторийоднойсистемыдифференциальныхуравнений[J].ДиффУрав,1968,4(4):639-645.
Relative Articles
[1] SHEN Xuhui. Lower Bounds for Blow-Up Time of Reaction-Diffusion Equations With Gradient Terms and Nonlocal Terms [J]. Applied Mathematics and Mechanics, 2022, 43(4): 469-476. doi: 10.21656/1000-0887.420155
[2] GU Jieping, HUANG Wentao, CHEN Ting. Solitary Periodic Waves and Local Bifurcations of Critical Periods for a Class of Reaction-Diffusion Equations [J]. Applied Mathematics and Mechanics, 2021, 42(2): 221-232. doi: 10.21656/1000-0887.410263
[3] BAO Xiaobing, LIU Libin, MAO Zhi. A Posteriori Error Estimation and Adaptive Algorithm for Singularly Perturbed Reaction-Diffusion Equations [J]. Applied Mathematics and Mechanics, 2021, 42(3): 323-330. doi: 10.21656/1000-0887.410103
[4] ZHANG Xiaoyan. Existence of Critical Traveling Wave Solutions for a Class of Discrete Diffusion SIR Models With Nonlinear Incidence and Time Delay [J]. Applied Mathematics and Mechanics, 2021, 42(12): 1317-1326. doi: 10.21656/1000-0887.420111
[5] ZHENG Jingpan. The Wave Speed Signs for Bistable Traveling Wave Solutions in 3-Species Competition-Diffusion Systems [J]. Applied Mathematics and Mechanics, 2021, 42(12): 1296-1305. doi: 10.21656/1000-0887.420093
[6] ZHANG Qiu, CHEN Guangsheng. Existence of Critical Traveling Waves for Nonlocal Dispersal SIR Models With Delay and Nonlinear Incidence [J]. Applied Mathematics and Mechanics, 2019, 40(7): 713-727. doi: 10.21656/1000-0887.390208
[7] ZHANG Xue, SUN Yuhuai. Dynamical Analysis and Solutions for (3+1)-Dimensional Time Fractional KdV-Zakharov-Kuznetsov Equations [J]. Applied Mathematics and Mechanics, 2019, 40(12): 1345-1355. doi: 10.21656/1000-0887.390352
[8] LI Panxiao. Exponential Stability of Traveling Wavefronts for ReactionDiffusion Equations With Delayed Nonlocal Responses [J]. Applied Mathematics and Mechanics, 2018, 39(11): 1300-1312. doi: 10.21656/1000-0887.380336
[9] GUO Zhihua, CAO Huarong. Stability of Traveling Wave Fronts for Delayed Lotka-Volterra Competition Systems With Stage Structures [J]. Applied Mathematics and Mechanics, 2018, 39(9): 1051-1067. doi: 10.21656/1000-0887.380293
[10] CAO Huarong, WU Shiliang. Traveling Waves of a Delayed Differential System in a Lattice [J]. Applied Mathematics and Mechanics, 2018, 39(5): 592-610. doi: 10.21656/1000-0887.380165
[11] ZOU Xia. Traveling Wave Solutions for Nonlocal Dispersal SIR Models With Spatio-Temporal Delays [J]. Applied Mathematics and Mechanics, 2018, 39(5): 611-630. doi: 10.21656/1000-0887.380118
[12] WANG Heng, WANG Han-quan, CHEN Long-wei, ZHENG Shu-hua. Bifurcations of Exact Travelling Wave Solutions to Coupled Higgs Equations and Maccari Systems [J]. Applied Mathematics and Mechanics, 2016, 37(4): 434-440. doi: 10.3879/j.issn.1000-0887.2016.04.011
[13] YANG Xiao-feng, DENG Zi-chen, WEI Yi. Traveling Wave Solutions to the Davey-Stewartson Equation With the Riccati-Bernoulli Sub-ODE Method [J]. Applied Mathematics and Mechanics, 2015, 36(10): 1067-1075. doi: 10.3879/j.issn.1000-0887.2015.10.006
[14] ZHANG Ji-xiang, LI Ji-bin. Bifurcations of Travelling Wave Solutions for a Coupled Nonlinear Wave System [J]. Applied Mathematics and Mechanics, 2005, 26(7): 770-778.
[15] TIAN Li-xin, XU Gang, LIU Zeng-rong. The Concave or Convex Peaked and Smooth Soliton Solutions of Camassa-Holm Equation [J]. Applied Mathematics and Mechanics, 2002, 23(5): 497-506.
[16] CHEN Song-lin. The Extinction Behavior of the Solutions for a Class of Reaction-Diffusion Equations [J]. Applied Mathematics and Mechanics, 2001, 22(11): 1217-1220.
[17] ZHANG Yu-feng, ZHANG Hong-qing. Two Types of Traveling Wave Solutions to Burgers-KdV Equations [J]. Applied Mathematics and Mechanics, 2000, 21(10): 1009-1012.
[18] Zhang Xiang. Singular Perturbation of lnitial-boundary Value Problems of Reaction Diffusion Equation with Delay [J]. Applied Mathematics and Mechanics, 1994, 15(3): 253-258.
[19] Zhang Wei-fu, Lü Rong-qing. On the Solution of Two Co-Affected Spedies [J]. Applied Mathematics and Mechanics, 1994, 15(2): 129-138.
[20] Tang Shi-min, Qin Su-di, R. O. Weber. Numerical Solution of a Nonlinear Reaction-Diffusion Equation [J]. Applied Mathematics and Mechanics, 1991, 12(8): 703-709.
Proportional views
Created with Highcharts 5.0.7 Chart context menu Access Class Distribution FULLTEXT : 23.3 % FULLTEXT : 23.3 % META : 76.1 % META : 76.1 % PDF : 0.7 % PDF : 0.7 % FULLTEXT META PDF
Created with Highcharts 5.0.7 Chart context menu Access Area Distribution 其他 : 8.4 % 其他 : 8.4 % China : 0.2 % China : 0.2 % 上海 : 0.2 % 上海 : 0.2 % 北京 : 0.7 % 北京 : 0.7 % 南宁 : 0.1 % 南宁 : 0.1 % 台州 : 0.2 % 台州 : 0.2 % 山景城 : 0.3 % 山景城 : 0.3 % 张家口 : 1.4 % 张家口 : 1.4 % 杭州 : 0.5 % 杭州 : 0.5 % 武汉 : 0.1 % 武汉 : 0.1 % 洛杉矶 : 0.3 % 洛杉矶 : 0.3 % 深圳 : 0.2 % 深圳 : 0.2 % 石家庄 : 0.7 % 石家庄 : 0.7 % 芒廷维尤 : 6.2 % 芒廷维尤 : 6.2 % 芝加哥 : 0.3 % 芝加哥 : 0.3 % 苏州 : 0.1 % 苏州 : 0.1 % 西宁 : 79.2 % 西宁 : 79.2 % 西安 : 0.2 % 西安 : 0.2 % 贵阳 : 0.1 % 贵阳 : 0.1 % 郑州 : 0.2 % 郑州 : 0.2 % 金华 : 0.1 % 金华 : 0.1 % 其他 China 上海 北京 南宁 台州 山景城 张家口 杭州 武汉 洛杉矶 深圳 石家庄 芒廷维尤 芝加哥 苏州 西宁 西安 贵阳 郑州 金华