ZHOU Zhen-gong, WANG Biao. Investigation of the Dynamic Behavior of Two Collinear Anti-Plane Shear Cracks in a Piezoelectric Layer Bonded to Two Half Spaces by a New Method[J]. Applied Mathematics and Mechanics, 2003, 24(1): 1-11.
Citation: ZHOU Zhen-gong, WANG Biao. Investigation of the Dynamic Behavior of Two Collinear Anti-Plane Shear Cracks in a Piezoelectric Layer Bonded to Two Half Spaces by a New Method[J]. Applied Mathematics and Mechanics, 2003, 24(1): 1-11.

Investigation of the Dynamic Behavior of Two Collinear Anti-Plane Shear Cracks in a Piezoelectric Layer Bonded to Two Half Spaces by a New Method

  • Received Date: 2001-07-19
  • Rev Recd Date: 2002-07-20
  • Publish Date: 2003-01-15
  • The dynamic behavior of two collinear anti-plane shear cracks in a piezoelcetric layer bonded to two half spaces subjected to the harmonic waves is investigated by a new method. The cracks are parallel to the interfaces in the mid-plane of the piezoelectric layer. By using the Fourier transform, the problem can be solved with two pairs of triple integral equations. These equations are solved by using Schmidt's method. This process is quite different from that adopted previously. Numerical examples are provided to show the effect of the geometry of cracks, the frequency of the incident wave, the thichness of the piezoelectric layer and the constants of the material upon the dynamic stress intensity factor of cracks.
  • [1]
    Deeg W E F.The analysis of dislocation,crack and inclusion problems in piezoelectric solids[D].Ph D thesis,Stanford University,1980.
    [2]
    Pak Y E.Crack extension force in a piezoelectric material[J].Journal of Applied Mechanics,1990,57(4):647-653.
    [3]
    Pak Y E.Linear electro-elastic fracture Mechanics of piezoelectric materials[J].International Journal of Fracture,1992,54(1):79-100.
    [4]
    Sosa H A,Pak Y E.Three-dimensional eigenfunction analysis of a crack in a piezoelectric ceramics[J].International Journal of Solids and Structures,1990,26(1):1-15.
    [5]
    Sosa H A.Plane problems in piezoelectric media with defects[J].International Journal of Solids and Structures,1991,28(4):491-505.
    [6]
    Sosa H A.On the fracture mechanics of piezoelectric solids[J].International Journal of Solids and Structures,1992,29(8):2613-2622.
    [7]
    Suo Z,Kuo C M,Barnett D M,et al.Fracture mechanics for piezoelectric ceramics[J].Journal of Mechanics and Physics of Solids,1992,40(5):739-765.
    [8]
    Park S B,Sun C T.Fracture criteria for piezoelectric ceramics[J].Journal of American Ceramics Society,1995,78(7):1475-1480.
    [9]
    Zhang T Y,Tong P.Fracture mechanics for a mode Ⅲ crack in a piezoelectric material[J].International Journal of Solids and Structures,1996,33(5):343-359.
    [10]
    Gao H,Zhang T Y,Tong P.Local and global energy rates for an elastically yielded crack in piezoelectric ceramics[J].Journal of Mechanics and Physics of Solids,1997,45(4):491-510.
    [11]
    WANG Biao.Three dimensional analysis of a flat elliptical crack in a piezoelectric materials[J].International Journal of Enginerring,1992,30(6):781-791.
    [12]
    Narita K,Shindo Y.Scattering of Love waves by a surface-breaking crack in piezoelectric layered media[J].JSME International Journal,Series A,1998,41(1):40-52.
    [13]
    Narita K,Shindo Y.Scattering of anti-plane shear waves by a finite crack in piezoelectric laminates[J].Acta Mechanica,1999,134(1):27-43.
    [14]
    ZHOU Zhen-gong,WANG Biao,CAO Mao-sheng.Analysis of two collinear cracks in a piezoelectric layer bonded to dissimilar half spaces subjected to anti-plane shear[J].European Journal of Mechanics A/Solids,2001,20(2):213-226.
    [15]
    YU Shou-wen,CHEN Zeng-tiao.Transient response of a cracked infinite piezoelectric strip under anti-plane impact[J].Fatigue and Engineering Materials and Structures,1998,21(4):1381-1388.
    [16]
    CHEN Zeng-tiao,Karihaloo B L.Dynamic response of a cracked piezoelectric ceramic under arbitrary electro-mechanical impact[J].International Journal of Solids and Structures,1999,36(5):5125-5133.
    [17]
    Paul H S,Nelson V K.Axisymmetric vibration of piezo-composite hollow circular cylinder[J].Acta Mechanica,1996,116(5):213-222.
    [18]
    Khutoryansky N M,Sosa H.Dynamic representation formulas and fundamental solutions for piezoelectricity[J].International Journal of Solids and Structures,1995,32(8):3307-3325.
    [19]
    Shindo Y,Katsura H,Yan W.Dynamic stress intensity factor of a cracked dielectric medium in a uniform electric field[J].Acta Mechanica,1996,117(1):1-10.
    [20]
    Narita K,Shindo Y,Watanabe K.Anti-plane shear crack in a piezoelectric layered to dissimilar half spaces[J].JSME International Journal,Series A,1999,42(1):66-72.
    [21]
    Tauchert T R.Cylindrical bending of hybrid laminates under thermo-electro-mechanical loading[J].Journal of Thernal Stresses,1996,19(4):287-296.
    [22]
    Lee J S,Jiang L Z.Exact electro-elastic analysis of piezoelectric laminate via state space approach[J].International Journal of Solids and Structures,1996,33(4):977-985.
    [23]
    Tang Y Y,Noor A K,Xu K.Assessment of computational models for thermoelectroelastic multilayered plates[J].Computers and Structures,1996,61(6):915-924.
    [24]
    Batra R C,Liang X Q.The vibration of a rectangular laminated elastic plate with embedded piezoelectric sensors and actuators[J].Computer and Structures,1997,63(4):203-212.
    [25]
    Heyliger P.Exact solutions for simply supported laminated piezoelectric plates[J].ASME Journal of Applied Mechanics,1997,64(4):299-313.
    [26]
    Shindo Y,Domon W,Narita F.Dynamic bending of a symmetric piezoelectric laminated plate with a through crack[J].Theoretical and Applied Fracture Mechanics,1998,28(2):175-184.
    [27]
    Morse P M,Feshbach H.Methods of Theoretical Physics[M].Vol 1.New York:McGraw-Hill,1958,828-929.
    [28]
    Gradshteyn I S,Ryzhik I M.Table of Integral,Series and Products[M].New York:Academic Press,1980,980-997.
    [29]
    Erdelyi A.Tables of Integral Transforms[M].Vol 1.New York:McGraw-Hill,1954,38-95.
    [30]
    Keer L M,Luong W C.Diffraction of waves and stress intensity factors in a cracked layered composite[J].Journal of the Acoustical Society of America,1974,56(5):1681-1686.
    [31]
    Amemiya A,Taguchi T.Numerical Analysis and Fortran[M].Tokyo:Maruzen,1969.
    [32]
    Itou S.Three dimensional waves propagation in a cracked elastic solid[J].ASME Journal of Applied Mechanics,1978,45(2):807-811.
    [33]
    Itou S.Three dimensional problem of a running crack[J].International Journal of Engineering Science,1979,17(7):59-71.
    [34]
    ZHOU Zheng-gong,HAN Jie-cai,DU Shan-yi.Two collinear Griffith cracks subjected to uniform tension in infinitely long strip[J].International Journal of Solids and Structures,1999,36(4):5597-5609.
    [35]
    ZHOU Zhen-gong,HAN Jie-cai,DU Shan-yi.Investigation of a Griffith crack subject to anti-plane shear by using the non-local theory[J].International Journal of Solids and Structures,1999,36(3):3891-3901.
    [36]
    周振功,王彪.采用新方法研究非局部理论中Ⅰ-型裂纹的断裂问题[J].应用数学和力学,1999,20(10):1025-1032.
  • Relative Articles

    [1]LÜ Xin, KE Liaoliang, SU Jie. An Axisymmetric Contact Problem of Piezoelectric Materials Based on the Couple Stress Theory[J]. Applied Mathematics and Mechanics, 2024, 45(10): 1268-1278. doi: 10.21656/1000-0887.450190
    [2]LI Nianbin, DONG Shiming, HUA Wen. Finite Element Analysis on Mixed-Mode Dynamic Fracture Experiments of Centrally Cracked Brazilian Disks With Crack Face Contact[J]. Applied Mathematics and Mechanics, 2021, 42(7): 704-712. doi: 10.21656/1000-0887.410349
    [3]LI Cong, NIU Zhongrong, HU Zongjun, HU Bin, CHENG Changzheng. Computation of Total Stress Fields for Cracked Bi-Material Structures With the Extended Boundary Element Method[J]. Applied Mathematics and Mechanics, 2019, 40(8): 926-937. doi: 10.21656/1000-0887.400013
    [4]DUAN Shujin, FUJII Koju, NAKAGAWA Kenji. Construction of General Analytic Functions With Finite Stress Concentration for Mono-Material Cracks and Bi-Material Interface Cracks[J]. Applied Mathematics and Mechanics, 2018, 39(12): 1364-1376. doi: 10.21656/1000-0887.390030
    [5]CHEN Ai-jun, CAO Jun-jun. Analysis of Dynamic Stress Intensity Factors of Three-Point Bend Specimen Containing Crack[J]. Applied Mathematics and Mechanics, 2011, 32(2): 194-201. doi: 10.3879/j.issn.1000-0887.2011.02.007
    [6]CAI Yan-hong, CHEN Hao-ran, TANG Li-qiang, YAN Cheng, JIANG Wan. Dynamic Stress Intensity Factor Analysis of Adhesively Bonded Material Interface With Damage Under Shear Loading[J]. Applied Mathematics and Mechanics, 2008, 29(11): 1376-1386.
    [7]ZHOU Zhen-gong, WANG Biao. Basic Solution of Two Parallel Non-Symmetric Permeable Cracks in Piezoelectric Materials[J]. Applied Mathematics and Mechanics, 2007, 28(4): 379-390.
    [8]BIAN Wen-feng, WANG Biao. Dual Equations and Solutions of Ⅰ-Type Crack of Dynamic Problems in Piezoelectric Materials[J]. Applied Mathematics and Mechanics, 2007, 28(6): 651-658.
    [9]ZHOU Zhen-gong, WANG Biao. Investigation of the Behavior of a Model-Ⅰ Interface Crack in Piezoelectric Materials by Using the Schmidt Method[J]. Applied Mathematics and Mechanics, 2006, 27(7): 765-774.
    [10]SUN Jian-liang, ZHOU Zhen-gong, WANG Biao. Dynamic Behavior of Two Unequal Parallel Permeable Interface Cracks in a Piezoelectric Layer Bonded to Two Half Piezoelectric Materials Planes[J]. Applied Mathematics and Mechanics, 2005, 26(2): 145-154.
    [11]QU Gui-min, ZHOU Zhen-gong, WANG Biao. Dynamic Behavior of Two Collinear Permeable Cracks in a Piezoelectric Layer Bonded to Two Half Spaces[J]. Applied Mathematics and Mechanics, 2005, 26(10): 1152-1160.
    [12]Lü Nian-chun, CHENG Yun-hong, XU Hong-min, CHENG Jin, TANG Li-qiang. Dynamic Crack Models on Problem of Bridging Fiber Pull-Out of Composite Materials[J]. Applied Mathematics and Mechanics, 2004, 25(10): 1093-1100.
    [13]MA Hao, WANG Biao. T-Stress in Piezoelectric Solid[J]. Applied Mathematics and Mechanics, 2004, 25(5): 467-471.
    [14]ZHOU Zhen-gong, WANG Biao. The Behavior of Two Parallel Symmetric Permeable Cracks in Piezoelectric Materials[J]. Applied Mathematics and Mechanics, 2002, 23(12): 1211-1219.
    [15]YI Zhi-jian, YAN Bo. General Form of Matching Equation of Elastic-Plastic Field Near Crack Line for Mode Ⅰ Crack Under Plane Stress Condition[J]. Applied Mathematics and Mechanics, 2001, (10): 1058-1066.
    [16]ZHONG Ming, ZHANG Yong-yuan. The Analysis of Dynamic Stress Intensity Factor for Semi-Circular Surface Crack Using Time-Domain BEM Formulation[J]. Applied Mathematics and Mechanics, 2001, 22(11): 1211-1216.
    [17]ZHOU Zhen-gong, WANG Biao. Investigation of the Scattering of Harmonic Elastic Waves by Two Collinear Symmetric Cracks Using the Non-Local Theory[J]. Applied Mathematics and Mechanics, 2001, 22(7): 682-690.
    [18]Li Chunyu, Zhou Zhenzhu, Duan Zhuping. Dynamic Stress Field Around the Mode Ⅲ Crack Tip in an Orthotropic Functionally Graded Material[J]. Applied Mathematics and Mechanics, 2000, 21(6): 590-596.
    [19]Zhou Zhengong, Wang Biao. Investigation of a Griffith Crack Subject to Uniform Tension Using the Non-Local Theory by a New Method[J]. Applied Mathematics and Mechanics, 1999, 20(10): 1025-1032.
    [20]Wang Zhenqing, Shi Shouxia. Stress-Strain Field near the Crack-Tip of an Incompress Rubber-Like Material[J]. Applied Mathematics and Mechanics, 1996, 17(8): 721-727.
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-072024-082024-092024-102024-112024-122025-012025-022025-032025-042025-052025-06020406080
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 16.9 %FULLTEXT: 16.9 %META: 82.6 %META: 82.6 %PDF: 0.5 %PDF: 0.5 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 2.9 %其他: 2.9 %China: 0.5 %China: 0.5 %Singapore: 0.1 %Singapore: 0.1 %Ukraine: 0.3 %Ukraine: 0.3 %内华达州: 0.2 %内华达州: 0.2 %北京: 0.9 %北京: 0.9 %南宁: 0.1 %南宁: 0.1 %台州: 0.5 %台州: 0.5 %哥伦布: 0.4 %哥伦布: 0.4 %大庆: 0.3 %大庆: 0.3 %张家口: 2.1 %张家口: 2.1 %新乡: 0.2 %新乡: 0.2 %武汉: 0.1 %武汉: 0.1 %深圳: 0.2 %深圳: 0.2 %湖州: 0.6 %湖州: 0.6 %石家庄: 0.7 %石家庄: 0.7 %芒廷维尤: 6.2 %芒廷维尤: 6.2 %苏州: 0.1 %苏州: 0.1 %衢州: 0.2 %衢州: 0.2 %西宁: 82.2 %西宁: 82.2 %西安: 0.1 %西安: 0.1 %达拉斯: 0.3 %达拉斯: 0.3 %郑州: 0.3 %郑州: 0.3 %阳泉: 0.7 %阳泉: 0.7 %其他ChinaSingaporeUkraine内华达州北京南宁台州哥伦布大庆张家口新乡武汉深圳湖州石家庄芒廷维尤苏州衢州西宁西安达拉斯郑州阳泉

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (2196) PDF downloads(632) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return